a July D. Brant B. Strates and N34 n - 96 - 01 TI - A - 684

D<u>RAF</u>T

ENVIRONMENTAL IMPACT STATEMENT

REVIEW GUIDELINES

FOR

AIRPORT/AIRCRAFT NOISE

Prepared by

EDWARD H. ROBBINS, A.I.P.

EDWARD D. STUDHOLME

for

The Office of Noise Abatement and Control Environmental Protection Agency

Washington, D.C.

March 28, 1975

Pursuant to EPA Purchase Order #P5-01-2027-A, dated January 14, 1975

TABLE OF CONTENTS

.

.

INSTRUCTIONS FOR USE AND INTERPRETATION OF SECTION I "AIRCRAFT NOISE MEASURFMENT TECHNIQUES AND IMPACT EVALUATION CRITERIA"	1
TABLE I - Summary Table of Measurement Units	2
FIGURE A - Graphic depiction of relationship between measurement units w/Table A	5
DEFINITIONS AND EXAMPLES	7
FIGURE B = Comparative Response of Noise Weighting Networks	8
FIGURE C - Noise Spectra for Development of EPNL vs. Distance Curves - DC-8 and 707	9
FIGURE D - Time Integration for SEL	10
FIGURE E - Comparison of SEL and EPNL Variations with Distance - 707 and DC-8 with JT3D Series Engines	12
FIGURE F - By-Pass Ratio	13
TABLE II - Aircraft Classification Table	14
INSTRUCTIONS FOR USE OF TABLE OF COMMON LOGARITHMS	18
INSTRUCTIONS FOR USE OF ANTILOG TABLE	19
SIGNIFICANT DIFFERENCES, ADVANTAGES, AND DISADVANTAGES OF MEASUREMENT UNITS	20
FORECASTING AIRPORT OPERATIONS	25
FIGURE G - Fundamental Airport Development	29
FIGURE H - Capacity Development Criteria	30
TABLE III-A - Certified, Scheduled Air Carrier Aircraft Groups	32
TABLE III-B - Use of Aircraft EPNL Contours	33
FIGURES I & J - Aircraft EPNL Contours	34
FIGURES K & L - Aircraft EPNL Contours	35
FIGURE'M - Aircraft EPNL Contours	36
FIGURE N - Aircraft EPNL Contours	37

¢

ο.

Э

0

્ર.

Table of Contents (Cont'd)

 \bigcirc

 \bigcirc

0

ø

 \bigcirc

ż

FIGURES 0 - Q - Aircraft EPNL Contours	38
TABLE VI - Example of Flight Track Utilization	42
TABLE VII - Example of Airport Utilization by Aircraft type, Time of Day, and Stage Length	43
FORECASTING LAND DEVELOPMENT	52
FIGURE R - The Airport/Aircraft/Land Use System	53
Land Use Guidance Evaluation Procedure	56
Sample Worksheets for Estimating Future Population	62, 63
TABLE IV - Notes to FIGURE S	68
FIGURE S - Land Use Compatibility Guidelines for Aircraft Noise Envrionments	69
FIGURE T - Noise Impact on Human Activities	70
ALTERNATIVES TO PROPOSED FEDERAL ACTIONS AND THE RELATIONSHIP TO NOISE ABATEMENT STRATEGIES	71
TABLE V - Noise Abatement Strategies: Costs, Effectiveness, Other Considerations	73-78
FIGURE U - Influence of Various Groups on Implementation of Noise Abatement Strategies	79
FIGURE V - Relation Between Strategies	80
FIGURE W - Time Horizons of Noise Abatement Strategies	81

INSTRUCTIONS FOR USE AND INTERPRETATION OF SECTION I "AIRCRAFT NOISE MEASUREMENT TECHNIQUES AND IMPACT EVALUATION CRITERIA"

 \odot

Э

 \odot

٢

٩

Ö

0

The individual reviewing the aircraft noise component of an E.I.S. should have a working knowledge of the various approaches used in estimating aircraft noise emissions from single events (individual aircraft) and cumulative exposures (several or many aircraft.) Although the Environmental Protection Agency has officially taken the position that all new aircraft noise impact analyses should employ the Ldn/Leq methodology, it is likely that a considerable interval of time will elapse before the currently existing and rather extensive data bases in CNR, NEF and CNEL may be converted. Undoubtedly, many actions requiring an E.I.S. will generate such small incremental changes in the noise environment that the expense of reprogramming to accommodate the Ldn/Leq methodology will not be warranted.

An adequate understanding of the most frequently used aircraft noise impact evaluation criteria and methodologies may be obtained by relating Table I and Figure A to indicated sections in the text addressing objectives, significant advantages and disadvantages and definitions and examples.

Table I briefly depicts the applicable objectives and rationale for twelve measurement units. In the box created by the intersection of a row corresponding to a measurement unit and a column indicating objective or rationale, appears the appropriate criteria and/or formula for obtaining the measurement units, followed by a <u>letter</u> denoting an explanitory illustration and <u>page numbers</u> keyed to discussions, definitions, and examples in the text.

Figure A graphically depicts the relationship between composite measures of annoyance and their respective single event sound levels as a function of the number of operations experienced and the time of day during which they occur.

)	(A)	(8)	(C) − 2 −
Measurement Unit	Sound Pressure Level	Weighting Frequency (HZ) to approximate human auditory experience	Correcting for the Duration of Overflight
dB	.0002 dynes 7, B, C per sq. CM		
dBA		A-weighted 7, B decibels	
PNdB		D-weighted 7, B decibels	
SEL		· ·	Time integrated 10, A, D, E average dBA from 10dB downpoints
SENEL			Time integrated average dBA from 30dB downpoints
EPNdB			Time integrated 11, A, B, E average pNdB from J-Q 10dB downpoints
CNR			
NEF	·		
Leq	•		
. Ldn		·	
CNEL		······································	
FI	4		
NU			
		,	TABLE I
~		· · · · ·	

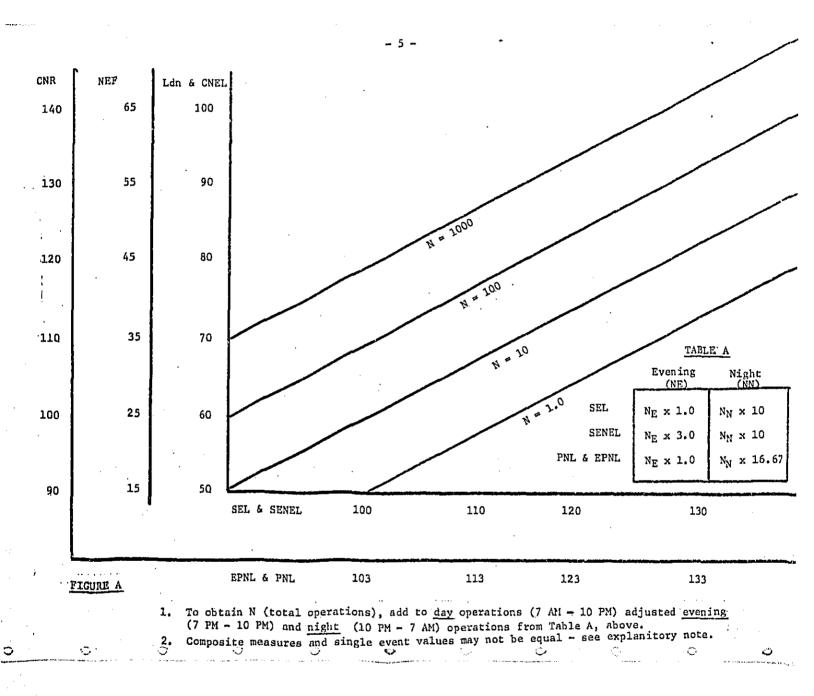
.

2

	(D)	(E)	(F)	- 3, -
surement Unit Jont'd)	Correcting for Pure Tones	Correcting for the Number of Operations	Correcting for Night Operations: Each Night OP = X Day OPS	
1B				
IBA				
?NdB				
SEL				
SENEL				
SPNdB	Penalty for "spikes in 11, A, C sound spectrum			
'NR'		Equals PNdB + 14, 20, A 10 Log N - 13	X = 16.67 10 PM - 7 AM 14, 20, A	
IEF		Equals EPNdB + 15, 20, A 10 Log N - 88	X = 16.67 15, 20, A 10 PM - 7 AM	
.eq		Equals SEL + 15, 16, 54, A 10 Log N - 10 Log T		
.dn		Equals SEL + 16, A, 21 10 Log N - 49.4	X = 10 16, 21, A 10 PM - 7 AM 16, 21, A	
NEL		Equals SENEL + 16, 17, A, 21 1C Log N - 49.4	X = 10 16, 17, 21, A 10 PM - 7 AM	
ʻI				
Ŭ,				
	:		TABLE I (cont	:'d)

and the second

Sec.


úÁ

هت ا

.

Ű

asurèment Unit	(G)	р. (II)	r (I) ÷ 4 -
(Cont'd)	Correcting for Evening Operations: Each Evening OP = X Day OPS	Evaluating Relative Effect on the Individual	Evaluating Relative Effections
dB	······································		
∘ dBA			
PNdB		· · · · · · · · · · · · · · · · · · ·	н Р
SEL	······································		
SENEL			
EPNdB	· · · · · · · · · · · · · · · · · · ·		
ÇNR	······································		
NEF	· · ·	· · · · · · · · · · · · · · · · · · ·	
Leq			
Ldn			
CNEL	X = 3 7 PM - 10 PM		
FI		Emission Level - 22, 54 Background or Criterion Level - 20	
NU			Effected POP x 24, 54 Fractional Impact
	· · · · · · · · · · · · · · · · · · ·		TABLE I (Cont'd)

* NOTE:

0

0

0

 \circ

0

0

0

 \mathcal{O}

` 🗘

The values indicated for CNR, NEF, Ldn, and CNEL may be obtained only for the respective values of PNL, EPNL, SEL and SENEL. This does not mean that the observed values at a fixed reference point will be equivalent . for a given airport, flight track or aircraft, e.g. a point 4000 feet from a flight tract may measure 103 EPNdB for a given operation, but will not necessarily (and almost certainly will not) measure 100 SEL for a given overflight. The analyst should be aware that Dweighted (EPNdB) and A-weighted (SEL) sound level meters will depict different rates of atmospheric absorption as a function of distance, depanding on the noise spectrum emitted by individual aircraft. Hence, it is not possible to state, for example, that a 45 NEF contour is "the same as" the 80 Ldn contour. However, because of similarities in weighting mechanisms the following comparisons are suitable for impact evaluation and planning purposes:

CNR = NEF + 75 Ldn = CNEL - 6 -

DEFINITIONS AND EXAMPLES

7

<u>Frequency</u> = cycles per second (CPS), or HERTZ (HZ), i.e., the number of sound waves striking a surface in one second. Auditory experience is pitch or tone, denoting high or low notes in music. Common range is 62.5 to 16,000 CPS.

Sound Pressure Level = the energy in each sound wave as it strikes a surface, i.e., the amplitude of the wave, which is measured in decibels (dB). Auditory experience is loudness. Sound pressure varies logarithmically as follows:

 $SP = 10^{n}/20$

where

 \sim

 γ

Ó

 \circ

 \odot

 \circ

Э

0

Ĵ

SP is sound pressure in dynes per square centimeter and n is the change in decibels

Thus, when comparing two sound pressure levels, the smaller numerical value may be subtracted from the larger and the difference substituted for 'n'.

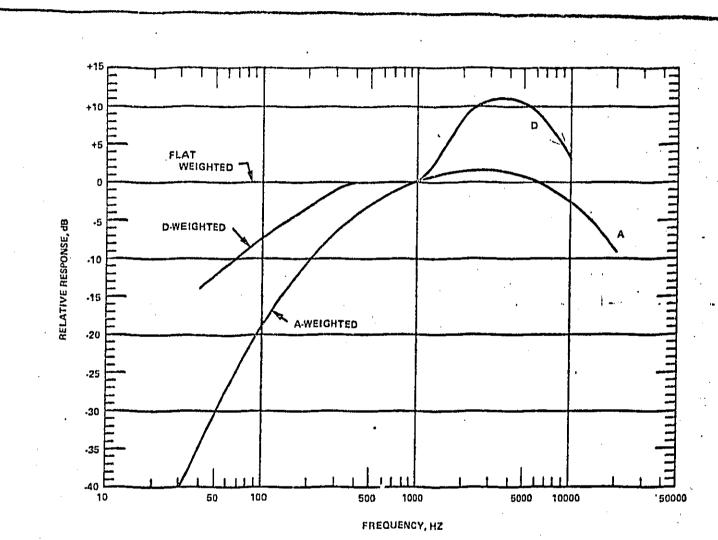
Example: How much more sound pressure has 80 than 60 dB?

 $SP = 10^{n}/20$

= 10 80-60/20

= 10 20/20

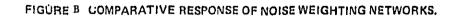
= 10¹

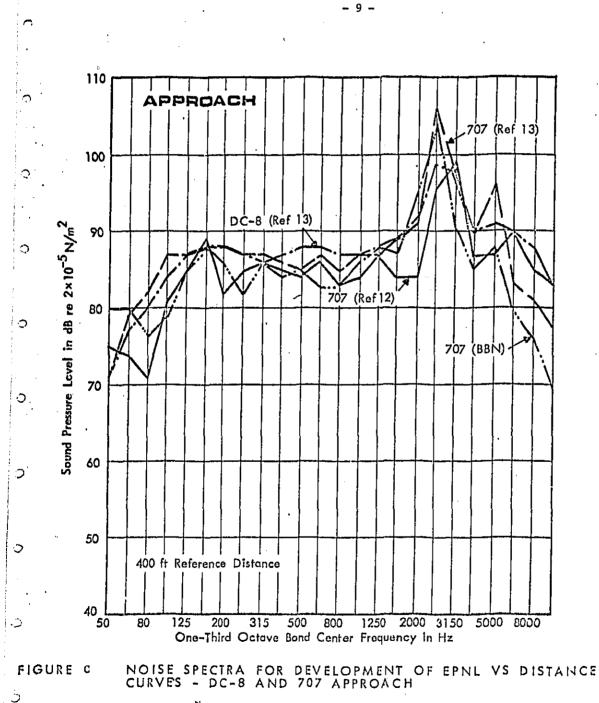

= 10 times the pressure

Example: How much more sound pressure has 100 than 60 dB?

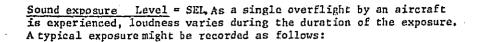
The answer should be 100 times the pressure.

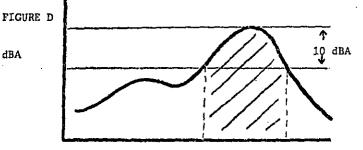
Loudness = human auditory response to combinations of frequency and sound pressure level. In order to measure loudness, instruments must be calibrated to respond to sound in a manner approximating the human auditory experience. In the United States, two weighting systems predominate, the "A" scale (dBA) and the "D" scale (dBD and PNL expressed as PndB), as depicted in Figure B.


<u>Spectrum or Signature</u> = depiction of sound with simultaneous consideration of frequency (NZ) and sound pressure levels, such that sound pressure levels are indicated for various frequencies. In Figure C, note the acute variation in sound pressure between 1500 and 4000 CPS. Such variations are referred to as "pure tones" or "spikes" in the signature.


 \odot

Ĉ


 \cap


' | 00

Ċ

- 10 -

TIME (SEC)

 \odot

୍

 \circ

Φ

\$

ø

 \bigcirc

Ċ

C

٢

The first "hump" is caused by fan noise as the aircraft approaches the observer, while the "trough" occurs as it passes and the observer is shielded by the engine coulings. The second "hump" occurs as the aircraft passes, and the exaust roar predominates. Although different frequencies dominate during each peak, the "A" weighting adjusts to approximate loudness as a human would perceive it. The <u>significant</u> portion of the exposure period, where SEL is utilized, is indicated by the time period beginning 10 dBA before the highest peak and ending 10 dBA after it. (Such points are often called the 10 dBA "down points.") A time integrated average sound level is then determined for this period.

SENEL = sound equivalent noise exposure level, is used in the State of California, and differs from SEL in that 30 dBA down points are prescribed. EPNL = effective perceived noise level, is expressed as EPNdB. 10 dB down points are utilized, but the measurement units are PNdB, i.e., are "D" weighted and more responsive to high frequencies. An additional penalty is prescribed for pure tones or "spikes" in signatures. Aircraft are certified for noise by the F.A.A. utilizing EPNdB.

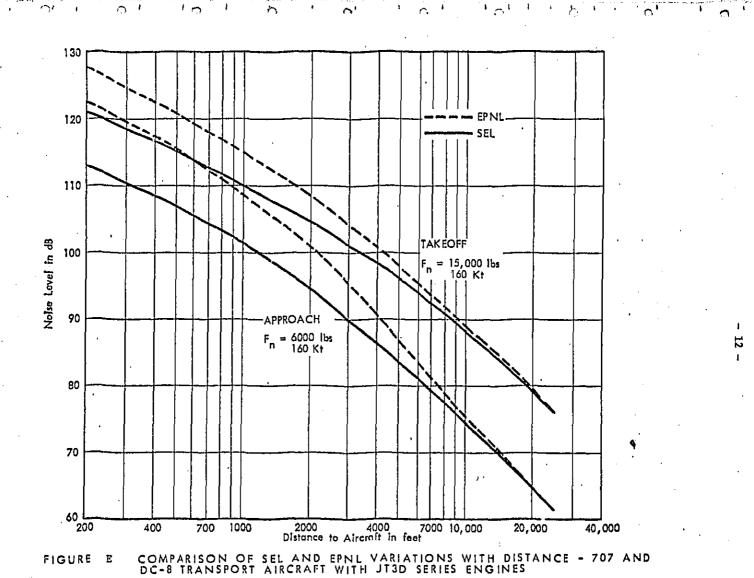
م

 $\hat{}$

 \bigcirc

С

٢


I

ා

Atmospheric absorption, often characterized by an "absorption coefficient" for a given frequency for such atmospheric variables as temperature and humidity, is a critical factor in forecasting aircraft noise exposure levels, and the reason for many of the basic incompatibilities between EPNL (EPNdB) and SEL (dBA). A tone with a frequency of 8000 CPS will be absorbed or will "attenuate" 55 dB for every 1000' from the source at a temperature of 10° F and 10% humidity. This indicates that at a distance of 3000' the 8000 CPS shriek of jet turbines measuring 150 dB at 100' would be inaudible. In general, high frequency tones have higher absorption coefficients than low tones. Thus, low tones "carry" a greater proportion of their original sound pressures than lower tones. Because A and D weighted sound level meters respond quite differently to identical signatures (the former greatly supressing tones below 500 CPS and the latter greatly accentuating tones in the 1000 - 4000 CPS range), and signatures may change considerably as a function of distance, temperature and humidity, it is not practical to convert sound levels measured in dBA to PNdB or vice versa. The rule of thumb that PNdB = dBA + 13 could be accurate for a signature for a given aircraft engine at a specified distance, temperature and humidity, but the absorption coefficients for identical engines will vary significantly depending on whether dBA or PNdB is employed as a measurement criteria.

Similarly, it is not practical to convert SEL to EPNL with any fixed constant because the respective A and D weighting mechanisms are utilized. In general, all jet aircraft on approach, and older 4-engine aircraft on takeoff will have signatures causing this complication (See Figure E). However, preliminary modeling exercises indicate that for DC-9, 737, and 727 aircraft in the takeoff mode, SEL may be closely approximated by EPNL -3, provided the reference point is more than 1000' from the aircraft.

- 11 -

 $\hat{\mathbf{Q}}$

.

Note that the point of intersection does not imply equivalent sound <u>levels</u>, but equal <u>rates</u> of absorption.

Standard Day = used to describe average atmospheric conditions for a 24 hour period, e.g., 70% humidity and 50° F for aircraft certification purposes.

 γ

 \sim

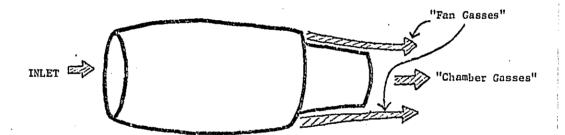
 $\hat{}$

୍

0

С

Э


Ĵ

Ċ

ت

By-Pass Ratio = the ratio of the volume of exaust gases ejected from the main conbustion chamber to those ejected by the larger "fan" turbine blades in turbo jet engines.

FIGURE F

The higher the ratio, the lower the sound pressure level for a given thrust application, because the incremental velocity between air flowing past the engine and the driving thrust is smaller. High bypass ratio engines have been developed to generate greater thrust at takeoff speeds and to meet F.A.A. Part 36 Noise Regulations, and include extensive accoustical insulation of nacelles (engine coulings), and may be observed on the new "wide body" series of jets, e.g., DC-10, 747 (CF6 α JT9D), and Lockheed 1011 (Rolls Royce powered) aircraft. Dominant frequencies are much lower than with low by pass ratio engines, and net reductions of up to 18 EPNdB are obtained over previous jet aircraft.

<u>Aircraft Classification</u> = the jet fleet may be conveniently grouped into broad classes by number and type of engines and "stage length", a criterion employed in approximating adjustments in gross take-off weight as follows:

- 13 -

TYPES	ENGINES; HIGH & LOW BY-PASS	TRIP LENGTH IN MILES 0-500 0-1000 2-2000 3000
DC-9, 737	2 eng. LBPR	
727-100, 727-200	3 eng. LBPR	· ·
707, 720, DC-8	4 eng. LBPR	
DC-10, L1011	3 eng. HBPR	
747	4 eng. HBPR	

TABLE II

14 -

The higher the gross takeoff weight, i.e., the longer the stage length, the lower and louder the aircraft will be during takeoff for a given power setting. Thus, low by-pass ratio powered aircraft with short stage lengths will tend to be the quietest.

Load Factor = simply the % of seats which are occupied by passengers during an operation. Load factors and capacities determine the number of operations which are necessary to accommodate a given number of enplanements, as well as gross takeoff weights.

<u>CNR = composite noise rating</u>, a methodology designed to predict community annoyance as a function of frequency of exposure, sound level (PNdB), and time of day as follows:

 $CNR = PNdB + 10 Log (N_D + 16.67 N_N) - 13$

where:

 \bigcirc

0

 \bigcirc

 \circ

0

0

 \supset

 \circ

Ο

PNdB is the "average" peak flyover noise $N_{\rm D}$ is the number of operations occurring between 7 AM and 10 PM and,

 $N_{\mbox{N}}$ is the number of operations occurring between 10 PM and 7 AM.

Example:

PNdB =	103	$CNR = 103 + 10 \log (500 + 16.67 \times 65) - 13$	3
N _D =	500	$= 103 + 10 \log (1583) - 13$	
NN ⊨	65	$= 103 + (10 \times 3.2) - 13$	
		= 135 - 13	
		= 122	

<u>NEF = Noise Exposure Forecast</u>, and differs from CNR only in that it utilizes EPNdB, rather then PNdB to make additional corrections for the <u>duration</u> of the overflight and "pure tones" (spikes in the noise signature), while employing a larger constant (-88 vs. -13):

- 15 -

 $NEF = EPNdB + 10 Log (N_D + 16.67 N_N) - 88$

where:

0

 $\hat{\mathbf{Q}}$

 \bigcirc

Ф

0

 \circ

Э

C

C

ت

EPNdB is the time integrated value for the "average" overflight noise exposure Np is the number of operations occurring from 7 AM to 10 PM, and N_N is the number of operations occurring from 10 PM to 7 AM.

Example:

EPNdB = 103	NEF = $103 + 10 \log (500 + 16.67 \times 65) - 88$
N _D = 500	= 103 + 10 Log (1583) - 88
$N_{N} = 65$	$= 103 + (10 \times 3.2) - 88$
••	= 135 - 88
	¤ 47

Leq = Equivalent Sound Level; the "average" sound level for a given time period, or the constant sound level which would give the same sound energy as one which varies with time for some time period. It may be derived from Sound Exposure Level (SEL) by subtracting 10 times the common logarithm of the duration of the time period in seconds accounting for the constant of -49.4 employed in the Leq formula for a 24 hour period:

 $Leq_{2\overline{4}}$ SEL + 10 Log N - 49.4

where:

Leg is the average sound level for a 24 hour period SEL4 is the time integrated average sound level during each operation, and

N is the number of operations in the 24 hour time period.

Note that 24 hours = 86,400 seconds and that 10 Log 86, 400 = 10 \times 4.936 or 49.4. Thus, for a given time period, i.e., Ld (day), Ln (night) Lh (hour), it is convenient when addressing aircraft noise to employ the following formula:

Leq = SEL + 10 Log N - 10 Log T

Where T is the time of the period in question in seconds.

Thus, when estimating the Leq for one hour (Ln) for a given flight track with 30 operations and an SEL of 85dB per operation, the analyst could compute:

Lh = SEL + 10 Log N - 10 Log T

or

0

0

0

 \circ

O

0

0

Ċ

Lh = 85 + 10 x Log 30 - 10 Log 3600 = 85 + 14.8 - 35.6 = 64.2

This indicates that a constant sound level of 64.2 dBA would yeild the same sound energy over a one hour period as 30 overflights at 85 SEL.

Ldn = Average day/night sound level, and utilizes dBA, time integrated from 10 dB "downpoints" to obtain SEL as the basic single event input, while weighting "night" operations by a factor of 10, rather than 16.67. Here, the constant selected is - 49.4.

Ldn = SEL + 10 Log $(N_D + 10 N_N) - 49.4$

where:

SEL is the time integrated value for the "average" overflight in dBA,

 $N_{\rm D}$ is the number of operations occurring between 7 AM and 10 PM $N_{\rm N}$ is the number of operations occurring between 10 PM and 7 AM.

Example:

SEL = 100 N _D = 500 N _N = 65	$Ldn = 100 + 10 Log (500 + 10 \times 65) - 49.4$ = 100 + 10 Log (1150) - 49.4 = 100 + (10 × 3.06) - 49.4 = 100 + 30.6 - 49.4 = 130.6 - 49.4
	= 81.2

<u>CNEL</u> is almost identical to Ldn, except the single event input, SENEL is measured from 30 dB "downpoints" rather than 10 dB, and an additional weighting of 3 is used as a multiplier for flights occurring during the "evening".

- 16 -

$CNEL = SENEL + 10 \log (N_D + 3 N_E + 10 N_N) - 49.4$

where:

 \cap

 \odot

 \odot

٢

0

 \circ

C

 \odot

Ċ

نت

SENEL is the time integrated value of the sound level emitted from the average overflight in dBA, measured from the points 30 dB preceding and 30 dB following the peak sound level obtained.

 N_D is the number of operations occurring between 7 AM and 7 PM N_E is the number of operations occurring between 7 PM and 10 PM N_N is the number of operations occurring between 10 PM and 7 AM

Example:

SENEL = 1	LOO	CNEL ⇔	100 +	10 Log (450 +	3x50 + 10x65) - 49.4
N _D ⊨ 4	50	Ħ	100 +	10 Log (450 +	150 + 650) - 49.4
N _E ≓	50	· 12	100 +	10 Log (1250)	- 49.4
N _N =		=	100 +	$(10 \times 3.1) - 4$	49.4
		=	100 +	21 - 49.4	
		2	131 -	49.4	
		=	81.6		

ASDS ="Airport Sound Description System" and utilizes the sound levels emitted by each aircraft operation to obtain a composite measure of annoyance in a manner differing significantly from CNR, NEF, Ldn, and CNEL in that the number of minutes of exposure above a criterion level are estimated, rather than cumulative sound energy. For example, an ASDS analysis might reveal that a criterion level of 85 dBA was exceeded for one minute in an average 24 hours period, while the time integrated average sound level obtained utilizing the Ldn methodology might be 53 dBA. Because the ASDS methodology arithmetically adds the number of minutes of exposure to a given sound level, the minutes of exposure are a direct function of the number of operations, i.e., if they are doubled in the example, 2 minutes of exposure are obtained-but a doubling of operations would add only 3 time integrated A-weighted decibels, e.g., 56 dBA. At this point in time, the ASDS methodology must be considered seriously deficient for the purposes of evaluating environmental impact, and may, in some instances, lead airport proprietors to pursue abatement strategies which will degrade rather than improve the environment.

Noise Contours = method for depicting points of equal sound level, e.g., 100 CNR, 30 NEF, 65 Ldn, 65 CNEL, etc., as a continuous line, in much the same manner as topographic contours depict points of equal elevation.

- 17 -

	COMMON LOGARITHMS
N O 1 D S 4 S 6 7 6 9 10 111 111 112 1111 111 1111	 Count the number of digits in the number for which the common logarithm is to be determined and subtract 1. Example: 94,869 has 5 digits, minus 1 is <u>4</u> (four) digits Write the number obtained in #1 and insert a decimal point immediately after it. Example: 4. Enter the Log Table, column N, and find the first two digits or the original number. Example: 94,869 find 94 in column N Read across the top of the Log chart and find the third digit, rounded to the nearest 10. Example: 94,869 = 94,900 Place the number indicated on the chart after the decimal point. Example: 4.9773 is the approximate logarithm of 94,869

- 18 -

 \cap

 γ

 \odot

С

Ç

С

.J

Ŋ

INSTRUCTIONS FOR USE OF ANTILOG TABLE FOR DECIBEL ADDITION

- 19 -

Decibels may be conveniently added by using an Antilog Table, as depicted in the example below. Note that two sound levels of equal value will always result in an accumulation of 3 dB.

SOUND LEVEL SOURCE (db)	•									ANTILOG	TADLE
	SOUND	AN	ANTILOG COLUMNS—LEFT DIGIT OF SOUND LEVEL								
		9	8	7	6	5	4	3	2	SOUND LEVEL	ANTILOG
1	65				3	1	6	2		0	1000
2	73			1	9	ġ	5			.1	1259
3	69				7	9	4	4		2	1585
4	82		1	5	8	5				3	1995
5	56					3	9	8	1	4	2512
										- 5	3162
										.6	3981
										7	5013
										8	6311
Total	83		1	8	9	9	5	4	1	ğ	7944

EXAMPLE FOR DECIBEL ADDITION

Comments on example: For 65 dB, enter antilog table with "5" to obtain the antilog "3162," etc. Enter "3162" on work sheet, with "3" in column 6, because the left digit of 65 dB word level is "6." This is done for all the other listed sound levels. The columns in the example add to 189531, Round ad to four digita-1900. From antilog table, 1990 is closest to 1995, the antilog of "5." The right digit of the total sound level is therefore "3." In the example, the left-most digit of the total sound level antillog is "1" and it appears in the column headed "8." The left digit of the total sound level is therefore "8," which with Step 5 determines the total sound level as "83." The total sound level of 65, 73, 69, 82, and 56 dD is thus 83 dB.

 \odot

 \mathbf{O}

С

Э

C

0

0

Ο.

ΰ

٢

SIGNIFICANT DIFFERENCES, ADVANTAGES, AND DISADVANTAGES OF MEASUREMENT UNITS

The major differences between, as well as the advantages and disadvantages of, the composite measure of annoyance (CNR, NEF, Ldn, and CNEL), stem from the single event measurement units (PNdB, EpNdB, SEL, and SENEL) employed. Examination of columns 5. 6. & 7 in Table I and Figure A will reveal that each composite measure is based on the furmula of the value of the single event measurement unit plus "10 Log N" where N is the total number of operations, adjusted for thettime of day during which they occur. The expression "10 Log N" simply means 10 times the common logarithm of the adjusted operations-if operations (N) are 10, 100, and 1000, the common logarithm is 1, 2, & 3 and the expression becomes 10, 20, and 30, respectively. Note that the "Log" actually denotes the number of digits following the first digit (in this case the number of zero's). Thus, the Log of 1 is zero because zero digits follow the first. Log values for any whole number may be estimated from Table For example, 5, 50, and 5000 become 1.69, 2.69, and 3.69, respectively, and hence the expression "10 Log N" yeilds 16.9, 26.9, and 36.9.

ാ

 \frown

0

 \mathbf{O}

Э

0

٢

ت

Attention may now be focused on the major differences between CNR, NEF, Ldn, and CNEL and the advantages and disadvantages of each discussed in more detail.

CNR and NEF

CNR is the oldest composite measure of annoyance, and the first to be adopted by the F.A.A. in 1964. It is still used exclusively by the Navy, but much of the national data base has been updated by NEF. There are two subtle differences between CNR and NEF: (1) CNR uses PNL expressed as PNdB as the single event input, while NEF uses EPNL expressed as EPNdB, which contains corrections for pure tones and the duration of the overflight, and (2) CNR employs a constant of -13. From this, the analyst might erroncously assume that values of NEF might be determined by subtracting 75 from values of CNR, e.g., a point predicted to be 105 CNR will be 30 NEF for the same airport. Because of the use of EPNdB rather than PNdB, however, the values are likely to be different -- the pure tone penalty for a given type of aircraft may, for example, occur at the high end of the frequency scale, and consequently measurements made in EPNdB will reflect a more rapid rate of absorption as a function of distance-the penalty may be high. 1000' from the aircraft and low 5000' away.

- 20 -

It is for this reason that NEF is thought to be a more accurate measure of community annoyance and a superior methodology for depicting the degree and location of impact. Both NEF and CNR are included as evaluation criteria in H.U.D. Circular 1390.2 as determinants of three zones of acceptability for residential housing mortgage insurance as follows:

(1)	Unacceptable	115	40
(2)	Discretionary - Normally Unacceptable	100-115	30-40
(3)	Acceptable	100	30

Ldn and CNEL

 $^{\circ}$

 \bigcirc

Ć

С

C

0

The Ldn methodology has been officially adopted by the U.S. Environmental Protection Agency, and differs very slightly from the CNEL methodology which has been adopted by the State of California. Two important, but not critical differences are: (1) Ldn uses SEL as the single event input, while CNEL uses SENEL, and (2) Ldn weights only night operations (10 PM - 7 AM) by a factor of 10, while CNEL applys an additional weighting of 3 for evening operations (7 PM -10 PM). Both SEL (Ldn) and SENEL (CNEL) are derived from time integrated average sound levels measures as dBA, but the SENEL approach defines the period of time for measurement as starting 30 dBA from the peak "flyby" sound level and ending 30 dBA afterward, while the SFL approach defines it as being 10 dBA before and after the peak. This subtle difference may lead to problems for the actual measurement and monitoring of single events for SENEL, because a moderately loud peak, of, for example, 85 dBA would require measurement from the point where the aircraft first registered 55 dBA to the point where it diminished below 55 dBA. The threshold of 55 dBA is so low that it is easily and frequently exceeded by background sound levels in the community. In addition, most commercially available A-weighted sound level meters are designed to read in bands of 10 dBA, and actually measuring a range of 30 dBA involves switching scales at least twice during each measurement.

As a matter of predictive validity, there is usually very little difference between SEL and SENEL, because the slightly lower "average" sound level obtained in using the latter is largely offset by the longer duration of the measurement (to "time integrate", both SENEL and SEL add a factor of 10 times the Log of the number of seconds to the "average" sound level obtained).

- 21 -

Consequently, most of any observed lack of congruence between Ldn and CNEL values is likely to be due to the increased importance placed on evening operations by the CNEL methodology. Where the impact on homogenously developed residential areas is considered, this factor appears appropriate, because home occupancy is usually higher during this period.

22

Both Ldn and CNEL have definite advantages over CNR and NEF methodologies, because they are derived from A-weighted decibels and may therefore be readily compared with estimated, projected. and actual sound levels emitted from other sources. The development of such methodologies has led to important experimentation in the field of aircraft noise impact evaluation, as exemplified by two concepts currently favored, although not officially adopted, by the Office of Noise Abatement and Control of the U.S. Environmental Protection Agency--"Fractional Impact" (FI) and "Noise Units" (NU).

FRACTIONAL IMPACT (FI)

The fractional impact of a given aircraft sound level (expressed in Ldn) is simply the difference between some reference level (again, expressed in Ldn) and the level emitted to the same point on the ground by aircraft, divided by 20. This reference level may be (1) a criterion level, or (2) a background level. Criterion levels are usually assigned to various types of land uses based on compatibility with noise. E.P.A.'s recommended level for residential development of 55 Ldn is a good example. Background levels are the measured or estimated sound levels present in a particular environment or study area. For example, homes near an urban freeway may have background sound levels of 75 Ldn or more.

Fractional impact may be determined from a criterion level as follows:

Example:

0

 \circ

0

Ö

0

Ċ

(1) Aircraft	emission	level	8	80	Ldn
----	------------	----------	-------	---	----	-----

- (2) Criterion level for residences = 55 Ldn
- (3) Ldn exceeded by aircraft = 25 Ldn
- (4) #3 ÷ 20 = 1.25 = Fractional Impact

A similar approach may be utilized for ground sources:

- 23 -

0

1

ು

0

Example:

(1)	Freeway emission level =	75 Ldn
(2)	Criterion level for residences =	<u>55 Ldn</u>
(3)	Ldn exceeded by freeway =	20 Ldn

(4) #3 ÷ 20 = 1.0 = Fractional Impact

When fractional impact is determined from a background level, the background level is merely substituted for the criterion level:

Example:

(1)	Aircraft emission level =	80 Ldn
(2)	Freeway background	75 Ldn
(3)	Net Ldn attributable to aircraft =	5 Ldn

(4) #3 ÷ 20 = .25 = Fractional Impact

The use of a constant divider of 20 reflects consideration of recent evidence strongly supporting the contention that both human annoyance and speech interference are arithmetically direct functions of the amount by which background levels are exceeded--while background levels and emission levels from a particular factor and speech interference level are negligable, but when the background is exceeded by 20 Ldn the intruding source is consistently identified as being intolerable. This factor has also been applied in determining fractional impact from criterion levels to make criterion and background level fractional impact analyses more compatible.

The most serious shortcoming of fractional impact analyses are that they tend to confuse psychological reaction with the laws of physics, especially when the background methodology is applied. In the previous example, aircraft emissions (80 Ldn) exceeded freeway emissions (75 Ldn) by 5 Ldn. Yet, in order to be acoustically correct, the analyst would be forced to admit that if the freeway were to be removed, a benefit would be obtained. This is because the combined sound level of both sources (adding 75 Ldn to 80 Ldn) would yeild a total of 81 Ldn for a net contribution of 1 dB for the freeway—an increment that is psychologically inaudible and which would yeild a fractional impact of only .05. However, if each of three sources met the EPA criterion level of 70 Ldn for

6)

Ο.

0

 \odot

long term protection from hearing loss, their cumulative effect at a single reference point would be about 75 Ldn, well above the criterion level. Examination of the "noise units" concept will serve to delineate the advantages and constraints of fractional impact analyses.

0

0

С

Ć

 γ

Ĵ

NOISE UNITS (NU)

Noise units are simply the effected population multiplied by the applicable fractional impact. In the previous set of examples three fractional impacts were determined:

- (1) Aircraft (80 Ldn) above criterion (55) = 1.25
- (2) Freeway (75 Ldn) above criterion (55) = 1.00
- (3) Aircraft (80 Ldn) above freeway background = .25

If the effected population in each case were 1000, noise units would be 1,250; 1,000; and 250, respectively. Psychologically, the aircraft contribute 250 noise units to an environment degraded by 1,000 noise units. To be acoustically accurate, however, the addition of 80 Ldn to 75 Ldn would yeild a total impact of 81 Ldn, for a new contribution of 6 dB, a fractional impact of .30, and 300 (rather than 250) noise units.

However, assuming a 10 Ldn reduction in aircraft noise (from 80 to 70 Ldn), aircraft would still contribute 1 dB to the environment (75 + 70 = 76 Ldn) for a fractional impact of .05 and 50 noise units. Psychologically, the aircraft would have a negligable effect, but acoustically the 50 noise units would exist. This becomes a very sensitive subject in the vast areas subjected to aircraft sound levels of 55 Ldn - 65 Ldn. In many such areas, indigenous residential noise is likely to exceed aircraft noise by from 1 to 6 Ldn, and hence, aircraft "contributions" would range from 3 to 1 dB for fractional impacts of from .15 to .05. The analyst should be aware that many such areas contain over 100,000 people, and that this acoustical phenomenon could account for 5,000 to 15,000 noise units.

- 24 -

FORECASTING AIRPORT OPERATIONS

The preceding impact evaluation methodologies and evaluation criteria are highly sensitive to the accuracy and validity of the data employed in the various models described. An <u>existing</u> situation may be validated by field measurements, and frequently when appropriate adjustments are made for atmospheric conditions, predicted sound levels correlate very well with measured values. When <u>future</u> sound levels are estimated, the potential for error is greatly increased because the accuracy and validity of input data must be questioned.

As the formulas for composite measures of community annoyance indicate, the analyst preparing an EIS must estimate the average daily operations for a mix of: (1) aircraft (2) flight tracts (3) flight profiles (4) load factors (5) stage lengths and (6) the time of day during which operations occur. The reviewer's task is somewhat simplified if he limits his investigation to (1) the <u>adequacy</u> of the information presented, and (2) the <u>reasonableness</u> of assumptions employed in the forecasting process. The test for <u>adequacy</u> is actually <u>completeness</u>, i.e., to what extent has the analyst presented the basic components of the air travel forecast? The test for <u>reasonableness</u> is closely related to <u>criticality</u>, i.e. are the assumptions and predicted variables which have the greatest potential effect on the aircraft/airport noise forecast values biased or arbitrary?

Completeness.

Ċ

 \odot

 \circ

Ö

0

A complete analysis of traffic and operations forecasting must include projections for air travel demand in the airport impact area, including cargo activities and consideration of the physical capacity of the airport. Assessment of noise impact will require conversion of these two aspects into aircraft types, numbers of operations and the timing of such operations.

A. Travel demand forecasting:

Travel demand forecasting is normally carried out through a comparison of population change, per capita income levels and employment data. Projection will require analysis of trends established in prior years and inclusion of information about current economic conditions. Many regional clearinghouses will already have models through which data particular to the region have been passed in order to develop regional forecasts for growth and demands for public services.

In some instances such data may be considered in the light of the Compertz curve, a forecasting technique best known for its application in analysis of the conomic lifecycle of a new product. Under such analysis the air travel

- 25 -

business is treated as a new product and future travel demand is projected according to the historical position of air travel in the lifecycle. (Some analysts have suggested that air travel should be considered a maturing industry, subject to a flattening of growth rates as new markets become more difficult to capture, and costs increase.)*

In In the absense of regional data systems which are capable of projecting travel demand the F.A.A. and the Air Transport Association provide data describing historical trends and projections of travel demand broken down into national, regional and airport-by-airport classifications. An additional component of demand analysis, that of origin and destination is also often included in such data, thereby providing insight into the mix of stage lengths which will characterize travel from any airport. Stage length information is a critical factor in the conversion of travel demand to aircraft types and the noise impact which they imply. Stage lengths are generally listed in terms of Long Haul-Domestic, Interurban (50-500 miles), and International, for passenger flights, though greater detail may be used when it is known. Air Cargo and General Aviation are separated, though stage length is an important component for cargo flight calculations when noise impact is being analyzed.

. To distribute travel demand between the airports in a particular region, analysts will often use variations of the gravity model, whose basic equation is

 $Tij = K \frac{Pi Pj}{dij}$

Where:

Ó

C

С

C

T = the number of transactions between places i and j Pi = the population of i

Pj = the population of j

In such analysis d may represent a time factor instead of a linear distance. Where two or more airports within a region may offer similar facilities, gravity models will provide a basis for allocation of passengers originating flights in the region.

Projections of air cargo activity will employ a slightly different set of components. Employment, annual personal income and average cargo revenue yield may be used and the

- 26 -

results given in terms of enplaned and deplaned cargo. The following equations have been used to establish trends for cargo activity:

 $Log \tilde{E^1} = 1.61754 Log Y - 1.3953 Log R + 1.9559$

for enplaned cargo, and

 \supset

 \bigcirc

¢

ø

0

Ċ

 $\log \frac{1}{E^2} = 1.6994 \log Y - 1.6746 \log R + 2.1484$

for deplaned cargo, where

.

- T = total annual volume of cargo explanement or deplanement in millions of pounds
- E = total employment in millions
- Y = total annual personal income of all residents in billions of current dollars, and
- R = average cargo revenue yield for all U.S. route certified carriers in current cents per revenue ton mile.**

Efforts to project general aviation usage have shown that a high correlation exists between population and aircraft ownership.*** Thus, projections for G.A. activity can be obtained by multiplying per capita ownership data by population projections. While these results may require further adjustment related to the components mentioned above, it is certainly appropriate that adjustments relating to general economic conditions in the target area be considered.

The travel demand forecasting must leave the E.I.S. reviewer with a clear picture of the mix anticipated. The percentage of registered air carrier operations, whether passenger or cargo, and the percentage of general aviation operations are critical to an understanding of the type of noise impact to be expected. Other essential output to be derived from travel demand data includes that which permits calculation of aircraft load and the time of day of operations. Both are critical in noise impact analysis.

* "Revised Aviation Forecasts for the Bay Region." Working Paper. Fort of Oakland, Oakland, California, December 31, 1974; p. 8 ff. ** Ibid. Appendix (Regional Airport System Plan Forecasting Equations.) *** Ibid. p. 21.

- 27 -

B. Airport Capacity

 $\overline{}$

С

С

Э

7

It is likely that an E.I.S. dealing with an airport will result from a decision to alter the airport capacity in some fashion or another. The basis for classification by capacity is established by the type and length of runway, and the degree of sophistication of navigational equipment available. The more complex are the airports operations, the wider the variety of actions which may be undertaken to expand capacity. Thus, parking space for automobiles, terminal facilities and repair or maintenance facilities may be the focus of expansion efforts at major airports.

When financing of airport capacity expansion required Federal Government assistance, a much more common condition today than in the past, and the <u>sine quanon</u> of a project requiring an E.I.S., the F.A.A. applies certain criteria to inclusion of the project within the National Airport System Plan. Congestion levels determine the suitability for inclusion in the plans for facilities expansion. For airports with registered air carrier service capacity is reached when delays due to large aircraft departures average four minutes during normal conditions for two adjacent peak hours of the week. Capacity is reached for small aircraft airports or runways when delays reach two minutes for the peak hour of the week.

To anticipate capacity situations the National Airport System Plan has established "capacity development criteria" which rely on the ratio of operations to the airport's Practical Annual Capacity, or PANCAP. These criteria are outlined in Figure H.

When conditions call for development of a new airport facility or substantial expansion of the type of service to be offered by an existing facility, such as a change from general aviation to registered air carrier capability, the project will fall udner the category of Fundamental Airport Development. A listing of "development items" may be seen in Figure G. An indication of the impact on operations which may result from inclusion of some of the development items is given in the following quote from the 1972 NASP:

> "...Depending upon the distribution of aircraft types (aircraft mix) and frequency using a runway, a fundamental single runway—stub taxiway configuration may be capable of handling about 75,000 annual operations. The provision of a full parallel

- 28 -

- 29 -

FIGURE G

- FUNDAMENTAL AIRPORT DEVELOPMENT

	Development Item	Airparts Serving General Ariation Only	Airports Serving Air Carrier ** and G. A.
~	LAND-airfield development, huilding area, clear zones, approach/departure areas, approach aids	Yes	Yes
	SINGLE RUNWAY-MIRL	Yes ¹	Yes ¹
ļ	CROSSWIND RUNWAY-MIRL	Yes 2	Yes *
_	TURNAROUNDS-MITL, one each ranway end	Yes	No
Û	PARTIAL PARALLEL TAXIWAY-MITL, in lieu of one turnaround (optional)	Yes	No
	FULL PARALLEL TANIWAY-MITL	No ^a	Yes
0	STUB/CONNECTING TAXIWAY-MITL, as appro- priate	Yes	Yes
1	EXTENDED RUNWAY SAFETY AREAS	No	Yes
1	VASI, each runway end	Yes ⁺	Yes **
	REILS	Yes "	Yes *
0	RUNWAY MARKING, as appropriate	Yes	Yes
1	APRON, including lighting if required	Yes	Yes
1	RUNWAY GROOVING, if appropriate in accordance with current criteria	Yes	Yes
С	ILS WITH APPROPRIATE APPROACH LIGHT SYSTEM, including land and site preparation	No	Yes '
	ROTATING BEACON: LIGHTED WIND CONE: SEGMENTED CIRCLE*: OBSTRUCTION LIGHTING AND MARKING where necessary	Yes	Yes
lo -	ACCESS AND SERVICE ROADS, in accordance with FAA Order 5100.17, paragraph 122	Yes	Yes
•	FENCING AND MISCELLANEOUS, such as crash and fire fighting facilities, utilities, etc., in accordance with current criteria	Yes	Yes

**Carrier must be scheduled and certificated by CAR.

³ Include IIIRI, for existing and forceasted PRECISION instrument ranways and for runways having an approved non-precision approach procedure.

² Include if required which coverage is less than 65 percent. Do not apply 80 percent length limitation. If crosswind ranway exists and is being utilized, consider it eligible for planning purposes regardless of which coverage.

Flightle for installation when runway reaches 20,000 anomal operations (hased on safety rather than capacity considerations). If new airport is forecast to reach this level in two years, include this taxiway as part of the fundamental configuration.

Include VASI-2 for utility runways and VASI-4 for transport type runways. Recommend VASI-4 on precision instrument runways which serve substantial numbers of general aviation alternation coupped for precision approaches.

5 Include VASI-6 (3 bar) for runways serving long-bodied jets. Include VASI-12 or VASI-16 (3 bar) ONLY on major international airport runways where a safety requirement substantiates the need.

4 Include only where there is a visual deficiency and the rutway is NOT a precision instrument runway.

* Provided the runway serves air carrier ** turbojet aircraft.

والمتحاج والمتعقبين المحمد والمحاجر والم

" Unnecessary for towered airports.

Э

ر

Ĵ

SOURCE: <u>1972 NASP</u>, D.O.T., Federal Aviation Administration G.P.O., Washington, D.C.; p. 26.

Capacity Development Item Runway (Additional)

Short Runway

Extension of a Parallel Runway Additional Taxiways Additional Exit Taxiways Holding Apron/By-Pass Taxiway

Terminal Aprons, Aircraft Loading Aprons, Parking Aprons Supplemental/Replacement Airports

 $60\% \times PANCAP$ 1. Parallel preferred 2. Same length and strength as pri-75,000 total operations including 1. Small aircraft only

Recommend for Inclusion at Forecast

CAPACITY DEVELOPMENT CRITERIA

30,000 or more by transport type nireraft. $60\% \times PANCAP$ $60\% \times PANCAP$

40% × PANCAP

75,000 total operations 20,000 itinerant operations or 30 peak hour operations

 $60\% \times PANCAP$

Not Later Than $60\% \times PANCAP$

Remarks

mary if serving same aircraft

2. Not necessarily parallel

1. Need dependent upon aircraft mix

2. Consider effect on NAVAIDS

3. Limit holding apron to 4 aircraft positions

Consider aircraft movements on edge taxiways

Timing depends upon forecast, type of airport, location (Metropolitan Area), etc.

SOURCE: 1972 NASP, D.O.T., Federal Aviation Administration, G.P.O., Washington, D.C.; p. 27. - 30 -

FIGURE H

:)

ĵ)

Э

 \circ

 \odot

Э

Ó

taxiway system can increase annual capacity to over 150,000 operations. The addition of a parallel runway and taxiway system to this configuration can double the annual capacity to well over 300,000 operations depending upon the appropriate runway spacing provided to accommodate uninhibited VFR and IRF simultaneous operations."*

C. Types of Aircraft

 \bigcirc

 \odot

___)

Ù

The translation of travel demand data into aircraft types is a difficult but vital part of noise impact analysis. Section 1 has described the properties of aircraft noise and the variations by type. In addition the stage length of any given aircraft on any given operation has great importance in noise impact determination. Table IIA, Table III and the related noise contours described in Figures I - Q provide a summary of aircraft types, distance capability and basic noise "foot-print." Table IIIA also reflects the seating capacity of the major passenger aircraft types. Analysis of this data makes clear the importance of aircraft mix in any calculation of airport noise impact.

D. Other Essential Components

.

Among those components considered essential for any noise impact analysis is a group related to scheduling and direction. The direction of prevailing winds, and such scheduling factors as the destination of flights, the time of day and the airport's geographic location have great importance. The prevailing winds generally dictate take-off and landing direction, or in the case of planning for a new facility, the alignment of runways. In situations of substantial existing noise impact, for example, the ability to redirect flight paths so as to avoid concentrations of population may be a tremendous asset in the struggle to reduce impact. Because night time activities have the disadvantage of a more sensitive population in the impact area, scheduling offers the possibilities of shifting noise impact to more tolerable times of day. In some cases this may be difficult, however, if the airport's location and the predominant destination of flights tie the facility to time zones which influence the schedule (e.g., it is preferable to fly to Europe from New York at night; there is no loss of a working day as the flights arrive early the next morning.) These factors may severely circumscribe the use of scheduling changes within a noise abatement program.

* 1972 National Airport System Plan. Vol. AAS, Narrative and National Summaries, U.S. Dept. of Transportation, Federal Aviation Administration. G.P.O., Washington, D.C.; p. 24.

- 31 -

CERTIFIED, SCHEDULED AIR CARRIER AIRCRAFT GROUPS

pite,

Ö

 \bigcirc

Э

 \bigcirc

 \odot

ر ¦ - 32 -

TABLE III-A

Aircraft Groups**	Length of Haul	Code
A		
B-747		
DC-8		
B-707	Code 1-Over 1,500 Miles	A1
VC-10	Code 2500-1,500 Miles	A2
C-5A	Code 30-500 Miles	A3
Future		
SST		
В		
B-727		
B-737	Code 1Over 1,500 Miles	B1
DC-10	Code 2500-1,500 Miles	B2
L-1011	Code 30-500 Miles	B3
BAC-1-11		
DC-9		
C		
L-188		
F-27		
F-227	Code 1N/A*	
YS-11	Code 2500-1,500 Miles	C2
CV-580	Code 30-500 Miles	C3
M-404		
V-724		

* These aircraft do not generally have a haul length over 1,500 miles.

** Aircraft are grouped in accordance with general runway requirements and not by physical size or passenger carrying capacities.

SOURCE: <u>1972 National Airport System Plan</u>, Vol. AAS, Narrative and National Summaries; U.S. Department of Transportation, Federal Aviation Administration. U.S. Government Printing Office, Washington, D.C.; p. 20.

TABLE III-B

USE OF AIRCRAFT EPNL CONTOURS

P)

Ð

٢

٢

0

Ċ

Э

ز

10

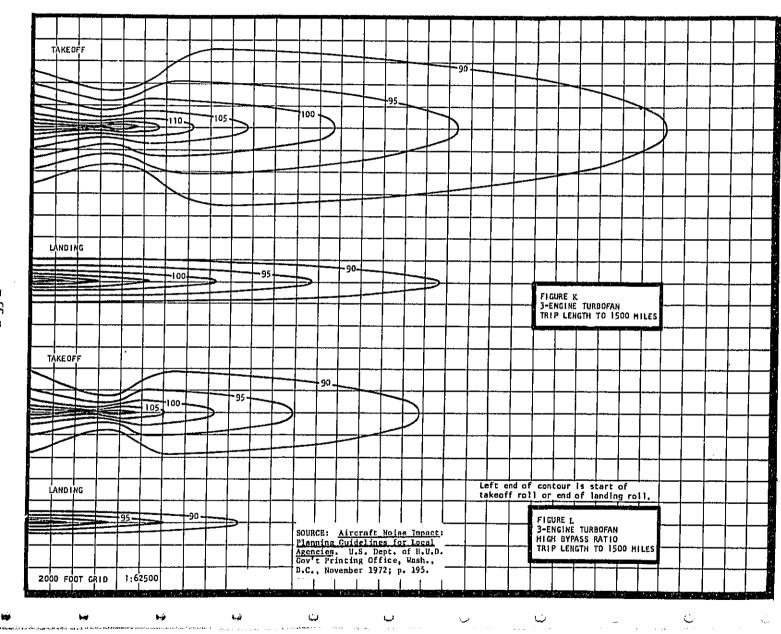
AIRCRAFT TYPE	EXAMPLES	EPNL CONTOUR FIGURE
2-engine transport	Boeing 737 Douglas DC-9 BAC 111	I
Business Jet	Lockheed Jetstar Sabreliner, Lear Jet, Jet Commander, Gulfstream II	J
3-engine turbofan transport	Boeing 727-100 727-200	ĸ
3-engine high bypass ratio turbofan	Douglas DC-10 Lockheed L-1011	L
4-engine turbofan transport	Boeing 707 Douglas DC-8	М
4-engine high bypass ratio turbofan	Boeing 747	N
4-engine piston and turboprop transport	Douglas DC-6, -7 Serie: Lockheed Constellation Lockheed Electra	5 0
2-engine piston and turboprop, over 12,500 lbs max. gross wt.	Convair 340,440 Series Douglas DC~3 Fairchild F~27 Series Grumman Gulfstream I	P
2-engine propeller, under 12,500 lbs. max. gross wt.	Plper Twin Comanche, Aztec; Cessna 310, Beech Baron, etc.	Q

SOURCE: <u>Aircraft Noise Impact: Planning Guidelines</u> <u>for Local Agencies</u>. U.S. Dept. of Housing & Urban Development. Government Printing Office, Washington, D.C., November 1972; p. 192.

- 33 -

TAKEOFF					T					1		Î.	1		ļ	"
		\vdash	╞	+		<u> </u>				<u> </u>			_	_		\downarrow
		\swarrow								<u> </u>						
		<u>}</u>	<u>+</u>	+	+	+		-95_				90				
			-105		100-			-95	-						\mathbf{P}	-
	115	110		Ð			}				∮	 				
				[<u> </u>		1		_	/	1					
	\rightarrow												+		\vdash	+
	+->	\mathbf{k}		┼──	<u></u>								+-	1		
	-		<u> </u>	╞───						·						
LÁNDING																
			100			-95-		╺──┼		-90-			 -	+	+	+
	105		-100-					\Rightarrow					\bowtie	≱		_ _
																1
SOURCE: <u>Air</u> Planning Gui	<u>craft</u> delin	<u>Nois</u> ea fo	e Im	<u>pact</u> : cal		+		I GURI	т.			<u> </u>				- -
Agencies. U Gov't Printi	LS. DA	ant.	of H	ם וו				-ENG	NE T	URBO	FAN					
D.C., Novemb	.ng UI1	Lice,	WES	n., j	I	1										
every derena	er 197	72; p	19.	з. (
	er 197	72; p 	• 19: 	3.		-+			_							-
		/2; p	. 19:	3.												
TAKEOFF		/2; p	. 19:	3.												
		/2; p	. 19:	3.				90-								
TAKEOFF		72; p		3.	95-			90-								
TAKEOFF	er 19			3.	95			90								
TAKEOFF				3.	95)		90								
TAKEOFF				3.	95			90								
TAKEOFF				3.	95			Left		of co			sta		F	
TAKEOFF				3.	95			90 Left takeo	end off ro			ur is id of	sta	rt o	f	
TAKEOFF				3.	95			Left	end off ro			ur is	sta	rt o ding	f	
TAKEOFF 11				3.	95			Left	end off ro			ur is d of	sta	rt o ding	F rol	
TAKEOFF 11				3.	95			Left	end of ff ro		ontou br en	nr is d of	sta	rt o ding	f rol	
TAKEOFF 11				3.	95			Left	end of ff			ur is d of	sta	rt o ding	f rol	
TAKEOFF 11				3.	95			Left	end off ro			nr is d of	sta	rt o ding	f rol	
TAKEOFF III LANDING				3.	95		9	Left takeo				ur is d of	stalan	rt o ding	f rol	
TAKEOFF 11				3.	95		9	Left takeo				nr is d of	sta lan	rt o ding	f	

Ċ,

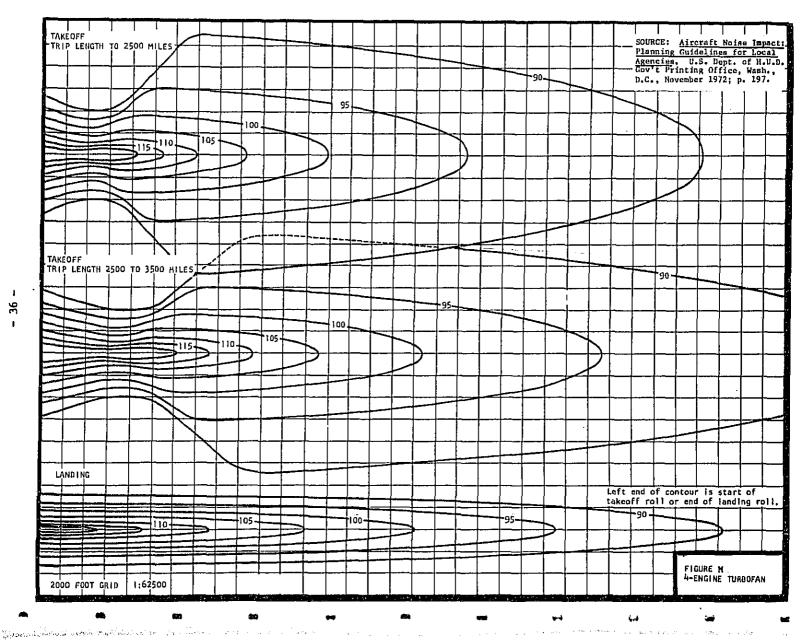

0

Ç

0

Ü

ن

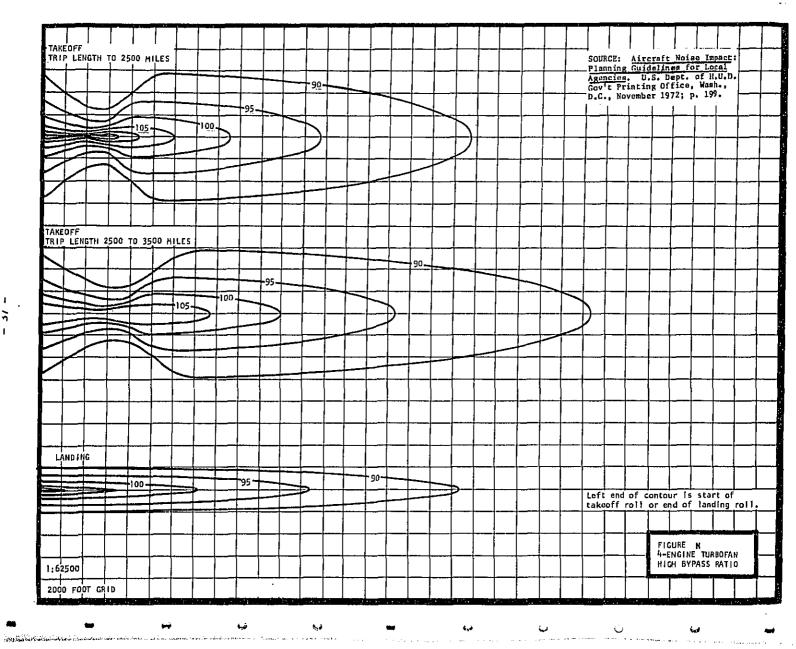


.

.

.

3


.

المناصف المراجع

1

36

T

and the second second

.

1 •

5 L

-

Ο.							AIR	CRAFT	EPN	L COM	TOUR	5						
	таке	OFF												Í				
$\hat{}$				ļ		ļ												1
			E	-	-100-				-95-					1	=90	-		-
		105	=	Þ			\geq			<u> </u>	Þ	}{	+	+	1			
5				<u> </u>								+		┼──		+	-	
	LÀND		<u> </u>	<u> </u>		<u> </u>					<u> </u>			-		<u> </u>		
2	====10	06	95			-90-			>_	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	 	Ì	·
				+		╞╼╼╾							{	}				ļ
				<u> </u>						FIGL 4-EN	JRE O	PRO				د را انتار ا		
0						 	 											
	ТАКЕ	055		┼──									+			┨───		
1					<u> </u>			90						<u> </u>		┨────		
>	==105		100	<u></u>	-95-							╡		 	<u> </u>			
r			+							 			\					
															<u> </u>			
, I	LÀND	ING 95		-90-														
		95				>-						1		1				
			+							FIGU 2-en	RE P							
)			┼──							2-EN	GINE	PROP	OVEN	{ 12,	500 L	85		
	┝╼╌┼╌┉											SOUR	CE :	Airc	raft	Nois	e Imp r Loc	act
			 		۱ 							Agen	ning cies	U.S	. Dep	t. 0	f H.U Wash	D.
	95	\Rightarrow	-90-									D.C.	, Nov	vembe	r 197	2; p	. 201	• •
										Left take	end off	of c	onto or e	ur is nd of	star	t of ling	roll.	
			1															
,	90																	
										FIGUR	ΕŌ				میں بین ا		┝╌┤	
	1:62500	<u></u>				}				2-ENC	INE	PROP	UNDE	<u>r 12</u> ,	500	BS	╘╌┤	
	2000 1	1																
ال والم المالية - 1919					•	18.23		4 <u>11</u> 3			- <u>(</u>)			1. A.				

•

- 38 -

To be complete the E.T.S. analysis must reflect the appropriate mixture of the above components. To be reasonable the mixture cannot anticipate technological change at rates in advance of those accepted by the Federal Government or the other components of the aviation industry. Nor can it anticipate demand for travel in excess of that allocated by study of regional trends. Finally, the analysis must paint a reasonable picture of the expected noise impact, not over dramatic, in an effort to bring about protective actions which might require excessive public investment, nor underplayed in an effort to submerge the plaguing noise problem.

- 39 -

Reasonableness

1

 \odot

Q

Ó

ψ

 \mathcal{O}

3

Ĉ

To assure reasonableness, therefore, the E.I.S. analysis will have to comprehend the importance of the components described above. Certian of these components have a much greater bearing on noise impact determination than might be expected. Thus the criticality of assumptions made about these components, and an example of their mix are the foci of the following paragraphs.

Several factors may combine which will provide the analyst with a proclivity for either overestimating or underestimating the extent of the noise problem for a given airport. In general, airports in undeveloped areas with little or no existing incompatible land use will benefit from an <u>exaggeration</u> of a future noise environment, while those experiencing extensive incompatible land useage (especially where litigation is of concern) will benefit from conservative estimates.

The rationale of exaggeration in the former case amounts to an attempt to preempt a sufficient amount of acoustical space to give the airport proprietor the maximum amount of flexibility in future planning and programming for rapid growth. Federal and state policies tend to discourage incompatible development in zones of intensive aircraft noise, and hence, in preventive situations it is advantageous to depict a substantial future impact. The rationale for conservatism in impact forecasting in the latter case amounts to a pragmatic approach to avoiding or ameliorating litigation and obtaining requisite Federal and State assistance.

In most cases, however, it is advantageous for the proprietor to demonstrate a high volume of airline passengers and terminal users with a low volume of operations--especially where this may be accomplished by assuming high load factors on wide bodied or new FAR 36 aircraft. Where existing or programmed runway capacities do not permit the heavier and substantially quieter aircraft, the existing Boeing 737 and developing 727-300 would be favored in forecasting fleet mix. The following example will demonstrate how certain variables and assumptions may be advantageously manipulated to suit the purposes of the analyst.

Example:

Ó

Э

9

 \odot

i J

Ŭ

- <u>Step 1</u> Macro and micro economic variables (usually population, income, and employment) are analyzed for the region the airport serves to determine air travel demand. The output is the number of gross regional passenger enplanements, and tons of air cargo.
- <u>Step 2</u> Passenger enplanements are assigned to the airport in question based on the accessibility and service level of other airports serving the same market. The output is usually the net passenger demand and tons of air cargo for the airport in question. This projection is frequently used in expanding terminal and parking facilities as well as improvements in ground access to accommodate increasing congestion.
- Step 3 All of the passengers and cargo forecasted in Step 2 must be assigned to aircraft in order to determine the number of aircraft operations for the forecast year. Generally an average capacity and load factor are assumed or estimated. For example, if the airport in question were assigned 8,869,500 passengers, and the average aircraft were assumed to have a 150 seat capacity, with an average load factor of 66.7%, one would expect 88,695 departures. (Departing aircraft = 8,869,500 ÷ 150 x .667). Since there must be an arrival for every departure, the total operations would be twice this amount, or 177,390 annual operations. The average annual <u>daily</u> operations (per 24 hour period) would be 177,390 ÷ 365 or 486.
- <u>Step 4</u> An estimate must also be made of the mix of aircraft comprising the fleet serving the air facility, the time of day during which they would operate, and the stage length of their operation upon departure. A typical method of depicting the output of such an analysis is as follows:

- 40 -

- 41 ~ p_{5} Meterological data and historical approach and departure patterns may then be examined to determined flight track utilization percentages for the airport, for takeoffs and landings. A typical method for depicting such flight tracks and percentages appears 0 Step 5 below: \circ $^{\circ}$ 0 С С С Ó Į ن

FLIGHT TRACK	TAKEOFF	LANDING
16R-A	6.56	3.67
16L-A	59.04	33.03
16-B	19.20	0.0
16-C	46.40	36.70
16-D	9.00	0.0
16 - E	7.70	0.0
16-F	1.30	0,0
16-G	37.40	36.70
16-H	0.0	10.80
16-I	37.40	21.60
16-J	0.0	4.30
34R-A	5.16	12.66
34L-A	29.24	50.64
34B	0.0	7.20
34-C	28.90	56.10
'34-D	5.50	0.0

TABLE VI

ت.

Ċ

Ö

Ċ

٢

SOURCE: <u>Aircraft Noise Analyses for the Existing Air Carrier System</u>, Bolt Beranek and Newman, Inc.; (Submitted to Aviation Advisory Commission, Wash., D.C.), September 1972.

ن

Ű

C

 \sim

0

Ű

					STAGE	TAKE-C LENGTHS IN		. MILES	
AIRCRAFT TYPE		LANDINGS	0~500	500- 1000	1000- 1500	1500- 2500	2500- 3500	3500- 4500	4500 And Over
4 ENG TFAN	DAY NIGHT	39.840 9.960	11,950 3,980	9.960 2.990	7.970 1.990	5.980 0.0	0.0 0.0	1.990 1.000	1.990 0.0
3 ENG TFAN	DAY NIGHT	31.750 5.600	15.880 3.360	6.350 1.120	3.170 1.120	6.350 0.0	0.0	0.0 0.0	0.0 0.0
3 ENG STRFAN	DAY NIGHT	56.030 6.220	28.010 2.490	14.010 1.870	11.210 1.240	2.800 0.620	0.0 0.0	0.0 0.0	0.0
2 ENG TFAN	DAY NIGHT	9.960 2.490	7.970	1.990 0.250	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
4 ENG HBPR	DAY NIGHT	31.750 5.600	0.0	3.180 1.120	3.180 0.560	12.700 2.800	9.520 1.120	0.0 0.0	3.170
3 ENG HBPR	DAY NIGHT	42.330 7.470	4.230 1.490	8.470 1.490	10.580 2.250	12.700 1.490	6.350 0.750	0.0 0.0	0.0

Ċ,

C

TABLE VII.

ن

SOURCE: Aircraft Noise Analyses for the Existing Air Carrier System, Bolt Beranek and Newman, Inc.; (Submitted to Aviation Advisory Commission, Wash., D.C.), September 1972.

ଁ

<u></u>

Ĉ

0

Note that at this point the effects of different aircraft have been "averaged." Thus, where 50% of all landings traverse flight track 34L-A, this amounts to about 122 daily landing operations and it is assumed that during the year the mix of aircraft serving the airport will be approximately the same as that utilizing track 34L-A. Note also that the main tracks designated as "A" (16R-A, 16L-A, 34R-A and 34L-A) total 100% for takeoffs and landingsthe lower alphabetical designations may exceed 100% because they serve both runways.

<u>Step 6</u> The distribution of aircraft operations determined in Step 4 may then be assigned to flight tracks and time integrated average sound levels estimated for any point on the ground. Points of equal loudness comprise the contours which are employed as a graphic summary of aircraft noise impact.

To demonstrate the criticality of specific variables and assumptions, we shall establish a reference point directly under the flight track 16L-A, 20,000 feet from brake release for specific types of aircraft and examine such variables as (1) takeoff weight, (2) flight track, (3) load factor, (4) aircraft mix, (5) time of day, and (6) flight profile.

1. Takeoff Weight

 \sim

 \bigcirc

2

 \diamond

0

0

Ż

The following depicts altitudes as a function of distance from brake release for three gross takeoff weights for the Boeing 737. Simple interpolation and the assumption of a full power climb without thrust cut-back yeild the indicated altitides at the 20,000 foot reference point as a function of takeoff weight:

Weight (lbs.)	Altitide 2 x 10 ⁴ from Brake Release
70,000	4,000
90,000	2,462
000 ر 110	1,667

The indicated altitudes would yeild SEL and EPNL values at the reference point as follows:

- 44 -

Weight (lbs.)	SEL	EPNL
70,000	94.5	97.5
90,000	98.7	102.0
110,000	102.3	105.7

If all of the aircraft using 16L-A were 737 aircraft, 59% of all takeoffs, or 143 operations (.59 \times 243) would occur.

2. Time of Day

For the purposes of this sensitivity analysis, the ratio of night to day operations may be assumed to be (1) zero (2) 10% or (3) 20%, yeilding effective operations for Ldn and NEF as follows:

Ops.
43
67
97

From this the following Ldn and NEF values may be computed for the reference point.

% Night OPS Weight		nction of Take Night Operatio 10	
0			
70 K	66.7	69.4	71.1
90 K	70.9	73.6	75.3
110 к	74.5	77.2	78.9
% Night OPS Weight		nction of Take Night Operation 10	
70 K	31,1	35.1	37.3
90 K	35,6	39.6	41.8
110 K	39.3	43.3	45,5

- 45 -

Ç

Ű

1

0

 \odot

 $\hat{\mathcal{O}}$

0

 \diamond

C

 \circ

1

The reviewer should note that while both Ldn and NEF values are very sensitive to changes in the % of night operations, both are extremely sensitive to takeoff weight and the combined effect of both variables can introduce a deviation of 12-14 dB. In the most extreme case an area predicted to be "discretionary" for residential development (31.1 NEF) could actually become uninhabitable (45.5 NEF) with changes in takeoff weight and night operations. This relationship is pointedly clarified where the reviewer notes that one 110,000 pound 737 operated at night will equal 63 day operations of the 70,000 pound 737 utilizing the Ldn methodology, and 138 operations using the NEF methodology.

3. Flight Track

 \odot

୍

 \circ

 \diamond

5

 \mathbf{O}

Ċ

Deviations in flight tracks may be obtained by prescribing turns on takeoff or approach. Reductions in sound levels received on the ground are a function of the increased distance between the reference point and the aircraft. This distance is often referred to as the "slant distance" because any operation other than a direct overflight will generate a geometric frame of reference such that the actual distance to the aircraft is described by the hypotenuse of a right triangle where the height is the altitude of the aircraft to the nearest point on the ground, and the base is the distance from that point to the reference point.

The lower the aircraft, the more rapidly the slant distance increases as a function of flight track deviation. For example, the direct overflight of the 70,000 pound 737 would expose the 20,000 foot reference point to 94.5 SEL from an altitude of 4,000 feet. A deviation in the flight track or 3,000' would increase the distance between the aircraft and the reference point from 4,000' to about 5,000' for a 25% increase in slant distance. The 110,000 pound aircraft, on the other hand, would have an initial distance of 1,600' from the reference point but a deviation in flight track of 3,000' would increase the slant distance to about 3,400', increasing it by 1,800' or about 212%. The 3,000' deviation would therefore decrease the sound level in the former case from 94.5 to 91.2 SEL (-3.3 dB) and in the latter case from 102.3 to 95.8 SEL (-6.5 dB).

Of course, there are limitations to such procedures, because if the requisite turn on approach is too sharp, additional power will be necessary to maintain the desired glide slope. Similarly, turns on takeoff may result in lower altidudes as a function of distance from brake release. Although it is not within the

- 46 -

scope of this document to provide the reviewer with the technical capability to determine the actual effect of flight track deviations, one should be congizant of the sensitivity of this variable and require the analyst to provide sufficient information for the reviewer to ascertain whether the approach taken is reasonable and unbiased.

4. Flight Profile

਼

 $^{\circ}$

2

0

Û

The trajectory of an aircraft may be voluntarily changed by its pilot, within the constraints defined by its weight, power, aerodynamic characteristics and meterological conditions. Two voluntary alterations in flight profile have received considerable attention in recent years; (1) two segment approaches, and (2) thrust cut-back on takeoff.

A two segment approach is basically an attempt to keep the aircraft as high as possible as long as possible. Many standard approach glide slopes are between 2.5° and 3°. Where an initial "steep" glide slope of 6° is utilized, it may intercept the final 3° slope at a variety of distances from the runway threshold and altitudes. The closer to the runway threshold is the point of interception, the lower the altitude of transition, and the greater the benefit in areas with the highest noise imaget. In addition to maintaining a greater distance between the aircraft and the ground, less power is required during the 6° segment, further.reducing emissions. For example, one type of two segment approach prescribes a 6° initial glide slope, intercepting a 3° glide slope at an altitude of 1,000', three miles from runway threshold. Such a procedure would result in reductions of from 0-10 EPNdB, with the greatest reductions occurring at distances of 5-10 miles from the airport. Another type of two segment approach prescribes an initial glide slope of 6°, intercepting a 3° glide slope at an altitude of 250-400', less than one mile from the runway threshold. Such a procedure could result in reductions from 5-15 EPNdB, with substantial benefits accruing in high noise zones.

Although safety and pilot workload considerations have delayed the adoption and promulgation of uniform two segment approaches, the glide slope is a fairly sensitive variable, and the reviewer should check the analyst's assumptions for reasonableness. In our example, the analyst could assume a 6° glide slope for the forecast year, or utilize an existing 3° glide slope, for flight track 16L-A. The 737 aircraft would pass over the reference point about 10,000' from runway threshold, (assuming a 10,000' runway length) at an altitude of 1,051' for the 6° glide slope condition, and 524' for the 3° condition, exposing the observer to 94 SEL and 99 SEL, respectively. (Values for

- 47 -

EPNL are about 98 and 105.8, respectively.) Noting that 16L-A is used for approach 33% of the time, it may be estimated that about 80 operations occur per 24 hour period. Again, assuming 1, 10 and 20% night operations the following values may be calculated for Ldn:

% Night OPS Approach		10	20
Profile	0	10	20
. б °	63.6	66.4	68.1
3°	68.6	71.4	73.1

and NEF:

% Night OPS Approach Profile	0	10	20
6°	29.0	33.1	35.2
3°	36.8	40.9	43.0

The reviewer should note that the difference between the 3° mode and 6° mode is +5 Ldn regardless of the percentage of night operations. The combined effect of the two could result in a difference of +9.5 Ldn.

NEF is even more sensitive to the 6° approach mode, with a difference of 47.8 NEF for all night operation percentages, and 413 NEF of the combined effect.

The sound levels obtained from both takeoff and approach analyses may be "added" (see example, page 19), to obtain the total noise impact for all operations at the reference point under 1.6L-A, such that the sensitivity of the variables of approach glide slope, percentage of night operations and takeoff weight may be examined in our example. The range of possible deviation is best demonstrated by the set of assumptions which would minimize forecasted impact with those which would exaggerate it, i.e., lowest gross takeoff weight, no night operations, and 6° glide slope with highest gross takeoff weight, 20% night operations

- 48 -

ڻ

~

 $\hat{\mathbf{a}}$

 \odot

 \Diamond

 \circ

0

0

0

 \mathbf{J}

and 3° glide slope. The results may be depicted as variations in predicted Ldn and NEF values for boeing 737 aircraft for a reference point directly under a flight track 20,000 feet from brake release and 10,000 feet from runway threshold.

Criteria	Worst Condition (3° approach, 110K takeoff wt. and 20% night operations)	Best Condition (6° approach, 70 K takeoff wt. and no night ops.)	
NEF	47.5	33.1	
Ldn	80.0	68.5	

The effect of the thrust cut-back option is extremely difficult to evaluate without detailed consideration of land use patterns in areas impacted by the flight track in question. A typical thrust cut-back procedure involves a full power climb on rotation (usually with a steep initial deck angle) followed by a rapid retraction of slots, flaps and landing gear which will place the aircraft in a "clean" flying configuration with a minimum amount of drag at a specified altitude (1500' is usually reasonable). The attitute of the aircraft and power settings are then adjusted such that a minimum rate of climb (about 500' per minute) is obtained. The actual power setting necessary to achieve this will vary by aircraft type and weight.

The procedure is most effective for two and three engine aircraft equipped with low bypass ratio engines (737, 727, and DC-9) where reductions of from 5 to 10 dB (EPNL and SEL) are possible at the point of thrust cut back, depending on the weight of the aircraft. However, the use of a minimum rate of climb will place the aircraft at significantly lower altitudes at greater distances from the cutback point, resulting in an actual increase in noise levels in outlying areas above that which would result if a full power climb out procedure were utilized. The effectiveness of the procedure therefore becomes a function of where noise sensitive land uses are located.

5. Aircraft Mix

 \sim

 \Diamond

 \odot

Ò

۵

1Ĵ

J

Of course, the assumption that all aircraft utilizing 16L-A are boeing 737's is not tenable and has been utilized as a matter of convenient simplification. It is a fortunate paradox that the largest aircraft in the commercial fleet today (DC-10, L 1011, and B 747) are substantially quieter than smaller aircraft with lower capacities. Reductions of from 5 to 15 EPNL and 7-12 SEL may be observed for the modern aircraft equipped with high bypass ratio engines meeting FAR Part 36 noise standards, depending on the distance from, mode of operation and types of low bypass ratio powered aircraft used for comparison.

- 49 -

If the reviewer considers the data presented for the approach configuration under "landings" in Table , he will note that about 87 NBPR operations out of 243 total operations are projected for the airport as a whole. Since 33% of these will approach on flight track 16L-A, about 29 out of 81 overflights will be FAR part 36 certified aircraft, of which about 16 will have 3 engines (DC-10 and L1011) and 13 will have 4 engines (B-747). By assuming a 3° approach glide slope, the relative contribution from each aircraft type may be quickly calculated of the ground reference point 10,000 feet from runway threshold directly under the flight track. Utilizing the Ldn methodology, we may obtain the following day/night average sound levels by aircraft type:

0

 $\widehat{}$

٥

 \diamond

0

9

Ũ

Ċ

DISTANCE = 524^{+}

		OPS	N _D +10N _N	10 Log N	SEL	Ldn
4 eng T	D N	13.15 3.27	45.85	16.6	106.9	74.1
3 eng T	D N	10.48 1.85	28.98	14.6	101.0	66.2
3 eng ST	D N	18.48 2.05	38.98	15.9	101.0	67.5
2 eng T	D N	3.27 .82	11.47	10.6	99.0	60.2
4 HB	D N	10.48 1.85	28.98	14.6	180.4	65.6
3 11B	D N	13.96 2.47	38,66	15.8	95,9	62.3
						76.3

Note the dominance of the 4 engine turbofan powered aircraft (707, 720-B, DC-8), even though only about 16 operations occur-64 overflights by other types contribute only 2.2 Ldn to the total. A similar analysis may be conducted for the takeoff condition, if the simplifying assumption may be made that all aircraft will reach an altitude of 2,500 feet by the time they pass over the reference point. Although the reviewer should be cognizant of the fact that differences in takeoff weight and aircraft performance

- 50 -

will introduce variations similar to those discussed in the pertinent sections above, the dominance of the 4 engine turbofan aircraft is valid because it is precisely this group of aircraft which would be least likely to achieve an altitude of 2,500' at the reference point.

DISTANCE = 524

 \mathbb{C}

 \odot

ି

0

 \bigcirc

0

÷

 \bigcirc

J

Ċ

			OPS	ND+10NN	10 Log N	SEL	Ldn
4	eng T	D	23.51				
		N	5.86	82.11	19.1	102.6	72.3
3	eng T	D	18.73	51.73	17.1	100.7	68.4
		N	3.30				
3	eng ST	D	33.06	69.76	18.4	100.7	69.7
		N	3.67				
2	eng T	D	5.89	20, 59	13.1	98.7	62.4
		N	1.47				
4	нв	D	18.73	51,73	17.1	99.6	67.3
		N	3.30	0		,,,,,	0110
. 3	нв	·D	24.98	69.1	18.4	93.7	62.7
-		N	4.41		+++1	2211	
	-						75.9

When considering the takeoff mode in the example, it is evident that although the 4 engine turbofan aircraft comprise only 29 of 143 operations type account for 72.3 Ldn at the reference point--the other types contribute an additional 3.6 Ldn for a total of 75.9 Ldn.

- 51 -

FORECASTING LAND DEVELOPMENT

3

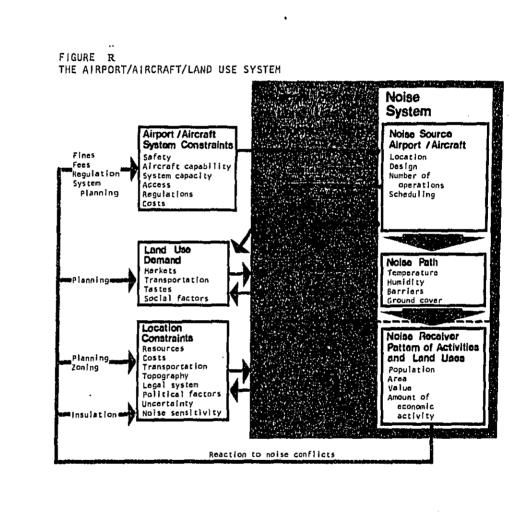
ು

 $^{\circ}$

0

Э

Э


- 52 -

The traditional isolation of airport facilities development from neighboring land development programs and policies has been abruptly ended in recent years by the increased objection of the airports' neighbors to the noise impact of aircraft. Thus, any future airport development must be considered in the context of local development in addition to the more familiar requirements of regional and national travel or freight demands and scheduling. The most comprehensive indication that such a coordination has taken place would appear in the General or Master Plans for the localities surrounding the airport. In the absence of such documents E.I.S. reviewers should require evidence of coordination drawn from a variety of other public documents or actions, such as official zoning maps, public facilities plans and regional plans. Greater detail on these instruments of land development and programming policy is given below. An E.I.S. shou be considered unacceptable, however, if no concrete reflection of such planning and programming coordination is included. (See Figure R.)

A. Population-A Critical Variable

At times, the level of sophistication obtained in forecasting the noise environment may lead the analyst and reviewer to an erroneous interpretation of future impact because of inadequate or incomplete consideration of the future use of land in aircraft noise impact zones. Determining the "absorption rate" for various land uses in a specific study area within a larger and more complex economic trade area is, at beat, complicated conjecture. Yet, the location of noise sensitive land uses and populations, as well as hourly variations in the occupancy of structures are critical variables which must be examined with care.

For example, when determining the number of noise units in a particular study area developed for residential use, the "population" is multiplied by the fractional impact attributable to aircraft, even though the actual population of the area is likely to fluctuate considerably between daytime and nightime periods. If a given study area contained 1,000 dwelling units, and an average of 3.6 persons per unit, a gross population of 3,600 would result. However, with children attending school, workers migrating to jobs and other household members engaging in recreational and shopping trips during the day (7 AM to 10 PM), daytime average hourly occupancy could drop to

SOURCE: <u>Aircraft Noise Impact: Planning Guidelines</u> for Local Agencies. U.S. Dept. of Housing & Urban Development. Government Printing Office, Washington, D.C., November 1972; p. 8.

- 53 -

 \odot

 $\overline{}$

¢

...

....

ز

1.6 persons per dwelling unit, or 1,600 gross population.

ာ

 \odot

0

Э

С

Ο

 \supset

 \odot

If the study area were exposed to 90 SEL from each of 300 aircraft operations, 270 of which occurred during the day, and 30 at night, and Ldn exposure rating of 68.2 would be obtained:

Ldn = SEL + 10 Log $(N_D + 10N_N) - 49.4$ = 90 + 10 Log (270 + 300) - 49.4 = 90 + 27.6 - 49.4 = 68.2

However, the daytime equivalent, Ld, would be 67.0:

Ld = SEL + 10 Log N - 10 Log T = 90 + 10 Log 270 - 10 Log 54000 seconds = 90 + 24.3 - 47.3 = 67.0

and the nighttime equivalent, Ln, would be 59.7:

Ln = SEL + 10 Log N - 10 Log T = 90 + 10 Log 30 - 10 Log 32,400 seconds = 90 + 14.8 - 45.1 = 59.7

If the study area has a background noise level of 60 Ldn, a fractional impact of .41 is obtained ($68.2 - 60 \div 20 = .41$). If the gross population of 3,600 is applied, 1,476 noise units are obtained. However, a "population equivalent" may also be determined by multiplying the actual occupancy of the study area by the fraction of a day observed, and totaling the products. For example, the daytime period (7 AM to 10 PM) is 15 hours long or 15/24 of one day. Similarly, the night period is 9/24 of one day. Thus, in the example, the population equivalent is determined by:

 $P = (15/_{24} \times 1600) + (9/_{24} \times 3600) = 1000 + 1350 = 2350,$

and total noise units are determined by 2350 x .41, or 964.

This deviation is particularly interesting when a curfew option is examined. Assuming no operations after 10 PM and a shift of all curfewed operations to the daytime period, Ldn is reduced from 68.2 to 65.4, and fractional impact changed from .41 to .27. With a daytime equivalent population of 1,000, 270 noise units result (.27 \times 1000 = 270). If the gross population of 3,600 is used, 972 noise units remain (.27 \times 3600 = 972) after the curfew.

- 54 -

To be technically correct, the population equivalent during the day should be examined fro the daytime average sound level, Ld, and during the night for the nighttime average sound level. Ln, while assuming a 10 Leq reduction in background noise level for the night period. Under these conditions, the daytime fraction impact is determined by $67.0 - 60 \div 20 = .35$, and the nighttime fractional impact is determined by $59.7 - 50 \div 20 = .485$. Applying the day (1000) and night (1350) population equivalents, 350 and 655 noise units are obtained, respectively, for a total of 1005 noise units. Applying the curfew option results in a slight increase in daytime operations and 375 noise units.

0

 \mathbb{C}

Э

Э

Thus, the actual occupancy of the study area for day and nighttime periods is an extremely important variable, especially when a curfew option is considered, and the reviewer should be cognizant of the possible range of deviations which may result from such variables, as exemplified by the summary table of the previous example:

TOTAL NOISE UNITS

	No Curfew	Curfew
Ldn and gross pop.	1476	972
Ld + Ln and equivalent population	1005	375
Ldn and equivalent pop.	964	270

B. Planning Processes and Land Use Controls: A Direct Approach to the Forecasting Problem.

Forecasting the actual development which will generate variations in population and occupancy is an extremely difficult task which may be greatly simplified where the reviewer applies the tests of completeness and reasonableness noted in the section concerning air travel demand forecasting.

The <u>completeness</u> of land development forecasts should be judged on the basis of the "land use guidance evaluation procedure" which follows, i.e., the review should determine whether the analysts' discussion and presentation of the

- 55 -

pertinent details concerning the developmental disposition of effected land in the airport noise impact zone is adequate. <u>Reasonableness</u> may be determined by the importance or weighting given by the analyst to various degrees of commitment made by appropriate decision-makers to control the use of land in a specified manner. For example, the following outline suggests a convenient method for evaluating and presenting important land use planning and control indicators:

- 56 -

LAND USE GUIDANCE EVALUATION PROCEDURE

- 1. Determination of extent and locus of authority
 - a. Identification of jurisdictions by name and geographic limits
 - b. Identification of specific planning and land development control authorities including:
 - those available as a matter of administrative discretion
 - 2. those requiring promulgation of new regulations (ordinances)
 - those requiring new legislation (from state, or national level)

2. Specification of Planning Powers

- Comprehensive or "master" planning authority, including such elements as
 - land use

 $^{\circ}$

C

୍

 \odot

 \odot

0

 \mathcal{I}

0

- circulation
- community facilities
- b. Areawide or regional planning authority and the relationship to state and local governmental powers.
- c. Special purpose planning authority, including the power to adopt plans for transportation, water, sewer, institutional and economic development on an inter- or intra-jurisdictional basis.
- d. Environmental Planning authority including:
 - preservation of natural resources
 - . prevention or remedy of air and water contamination
 - protection from hazardous environments
 - preservation of historic resources

3. Inventory of Land Development Status

a. Undevelopable land, including

flood plains

 \sim

 \sim

Э

 \supset

С

C

0

С

Ĵ

ن.

- . earthquake zones
- parks or wildlife refuges
- . areas of extreme slope
- b. Undeveloped land land considered developable but lacking sufficient market interest to bring about conversion. Indicators include
 - stable or decreasing tax assessment
 - no applications for development permits (building, etc.) or changes of zoning
- c. Developing land land which may or may not show evidence of construction but which will reflect the presence of market factors such as those suggested in (b.) above.
 - increasing tax assessments
 - applications for zoning changes
 - . applications for development or construction permits
 - planning for or construction of infrastructure such as roads, water and sewer lines, electric power facilities, etc.

One of the most important signs of developing land occurs when the tax assessment on a parcel of land is greater than that of other parcels showing the same land use (i.e., an assessment at levels applicable to developed land in the region when the parcel in question continues in agricultural use.)

d. Developed land - developed land is generally well fragmented into discrete parcels which are occupied by manmade structures.

Where further subdivision of land is possible without redevelopment (razing of structures), it should be considered <u>developing land</u> to the extent that the characteristics mentioned in (c.) above are present.

e. Redeveloping land - redeveloping land has generally reached the status of developed land but reuse of the property is likely to require the actual demolition or modification of structures. Rehabilitation of structures, whether privately or publically financed, should not be construed as redevelopment unless a change in use or higher occupancy ratios are likely to result.

4. Land Use Controls

 \overline{a}

 \odot

 \odot

0

C

Ö

О

0

С

C

Ć

For each governmental entity described in Section 1, the analyst should determine whether or not its authorities include the following land use and development controls. In addition, a determination should be made of the nature of the existing land use controls being exercised, for each category, and whether such controls are likely to be effective.

a. Regulation - exercises of the police power

~ 58 -

- 1. zoning
 - a. cumulative
 - b. noncumulative
 - c. incentive ordinances (planned districts)
 - d. conditional use provisions
 - e. performance standards
- 2. subdivision regulations
 - a. site plan review
 - b. in lieu payments
 - c. front foot benefit charge
 - d. fees
- 3. housing codes
 - a. acoustical performance standardsb. code enforcement
- 4. building codes
 - a. acoustical performance standardsb. occupancy permits
- 5. official mapping
 - a. highways
 - b. terminals
 - c. utilities
 - d. parks
 - e. statuatory time limitations
- 6. title recording
 - a. flood plains
 - b. easements
 - c. noise labeling
 - d. other hazardous environments

- 59 -

7. statuatory nuisance

 $\overline{}$

 $\overline{}$

ି

0

 \bigcirc

0

C

J

. 0

الإيرين والراد متحاصلات والأشتاه

1.1

- a. noise emissions
- 8. development districts
- 9. development rights

b. Acquisition and Disposition of Public Lands

- 1. condemnation
 - a. public purpose definition-eminent domain
 b. public purpose definition-expenditure of public funds
- 2. leasebacks
- 3. sellbacks
 - a. with covenants
 - b. with easements
- 4. easements
 - a. use easements.
 - h. right to trespass
 - c. right to make noise
 - d. right to nuisance
- 5. land trades
- 6. excess condemnation
 - a. remnant authority
 - b. restrictive authority
 - c. recoupment authority
- 7. advanced acquisition
- 8. "quick taking" and triple bonding
- c. Monetary and Fiscal Incentives and Controls
 - 1. special tax districts
 - a. development districts
 - b. interjurisdictional tax sharing

- 60 -

c. 2. land banking

 \odot

Q

0

O

Ó

0

Ű

C

Э

 \circ

a. property tax deferralb. payment of back taxes for reuse

3. transfer payments

- a exemptions
- b. deductions
- c. differential assessed values
- d. differential tax rates
- c. special assessments

4. annexation and consolidation

5. bonds and bonding limitations

- a, revenue
- b. general obligation
- c. tax exempt interest

6. loans

- a. community infrastructure
- b. industrial development
- c. residential development
- 7. grants
 - a. community infrastructure
 - b. industrial development
 - c. residential development
- 8. guarantees
 - a. mortgage insurance
 - b. interest rates
 - 1. guaranteed interest
 - 2. subsidized interest

9. fees

d. Capital Improvements

1. water and sewer

- a. permits
- b. licenses
- c. performance standards
- d. capital financing
- e. operational financing

d. 2. transportation facilities

collector streets a.

- 61 -

- arterials Ь.
- c. limited access
- d. mass transportation facilities
- e. vehicle storage

3. utilities

 \sim

 \bigcirc

Э

Э

0

0

Ĵ

Э

Č

- а. permits
- b. licenses
- c. performance standards
 d. capital financing
 e. operational financing

e. Contractual Agreement

- 1. hetween public entities
- 2. between public and private entities
- 3. between private entities

SAMPLE WORKSHEET FOR ESTIMATING FUTURE POPULATION*

	STATE A]					
STUDY AREAS	3	4	5	19	31	33	34	19	31	33	34	
Planning Powers	د.	SPECI	NMEN	DURPO	SE - F2001	WATER PLA	SHED					
Land Development Status ** Status Category	В	E	D	E	В	с	С			• • • • • • • • • • • • • • • •		
Exercised Land Use Controls . Regulatory . Acquisition & Disposition			Ayuisit. For PARK			o FFicial MA P- STATE HIGHWAL (0% SITE TAKING 3-5 Y EAPS		1300.2	Fpic F200D P2AiN	1300.2	Ημ D 1390.2 ωλΑς- ΟςΕΡΤΤβιΕ	
. Monetary & Fiscal		19 40 V V		••••	NO INSURANCE					NO VA FHA M INSUR	GRIGAGE	
. Capital Improvements . Contract			· · · · · ·	- -		HIGHLAP, CLOVER LEAST + ENEMENT 5-7 Y/S					,	

Counties A & B (on the following page) are within State A, etc.

ų

** A = Undevelopable B = Developable C = Developing D = Developed E = Redeveloping

Ó

0

*

Ċ

Ö

 \odot

-

Ċ

Û

SAMPLE WORKSHEET FOR ESTIMATING FUTURE POPULATION

والاراقة والمستجربين الرواري

		COUNTY A					COUNTY B						
STUDY AREAS	1	2	3	4	5	6	18	19	30	31	32	33	34
Planning Powers		mpr popt	EHEN	SIVE	- 197	2	°C B	OMP	REH2 G R	ENSI	UE - ED	CURR	ENTLY
Land Development Status Category	C	B	·B	E	P	D	Ē	Ē	B	B	B	с	C
Exercised Land Use Controls . Regulatory *	Bu	12011	LATIL G Co Ris	DES		v	50	BDIVI	5102	N RE	525.	Ho	UING ISING
• Acquisition & Disposition	: . A .(-52		LEASED ENDUST PARK		<u>- ^ ></u>			15	NG	-28-	<u>~~</u> 5	
• Monetary & Fiscal	· · · · · · · · · · · · · · · · · · ·						/		USE RE:)	ICULT TAX EF L FRUE			1 1
• Capital Improvements	5EWER 5TORIN 1.8 MIL 2-3 X	PRAIN LION RS.	COLATY ROAD EXTENTINA D-3 1R.	, , , , , , , , , , , , , , , , , , , ,								141661	R \$ 1.4
. Contract									0,50	COVE! COVE! ALL PRO	UNINT	}	
Population by Principal Permitted Use . Existing	15	25	0	0	260	614	0	0	4	16	9	240	3/2
. Forecasted	180	300	1000	0	260	614	0	0	4	16	ମ	1100	16,00

* R1, R5, etc. refer to zoning categories.

3 3 J J 0 Ċ

والمعام والمراجع والمعارف والمعالية والمراجع والمراجع والمراجع المراجع والمراجع والمراجع والمراجع والمراجع

Ú.

Ü

Ü

Note that in Section 1, the reviewer may determine from the E.I.S. the basic geographic and legal limits of jurisdictions with actual or potential authority to control land use. In Section 2, the specific power to <u>plan</u> is depicted for each jurisdictional entity described in Section 1. Then in Section 3 land presently or potentially impacted by aircraft noise is conveniently sorted into four categories which may be subsequently evaluated utilizing the existing land use <u>controls</u> exercised by governmental entities described in Section 1.

 \bigcirc

 \odot

Э

7

Э

 $^{\circ}$

<u></u>

0

÷

Up to this point, the reviewer may decide that the E.I.S. is <u>complete</u>, but the analyst's assumptions concerning the potential effectiveness of various land use controls in different situations should certainly be scrutinized for <u>reasonableness</u>. For example, in a study area which is largely comprised of undeveloped and developing land which is both planned and zoned for agricultural use, but for which speculative pressures (e.g., high tax valuation for a limited use) and inconsistent planning practices (e.g., granting of changes in zoning, and/or building of supporting water and sever facilities), the reviewer should be cognizant of the fact that the existing zoning will do little or nothing to prevent development, regardless of the good intentions voiced by the local governing body; the assumption by the analyst that the area would remain agricultural would be unreasonable, and that portion of the statement inadequate.

Another area which must be scrutinized is concerned with whether specific jurisdictional entities have the authority to exercise a proposed land use control, and, most importantly, what degree of authority is available under existing legislation. The assumption that a governing body or agency has the authority to acquire land or rights in property for specific purposes; to regulate the use of land in a prescribed manner; or to prospectively employ monetary, capital improvement, or contractural controls for the purpose of achieving compatible land usage is one which must clearly and unequivocally be a matter of <u>administrative discretion</u>. Where such controls are to be applied pursuant to the promulgation of regulations or new enabling legislation, the assumption that they will actually be applied is unreasonable. In cases where the analyst has failed to provide the reviewer with information of sufficient detail for the reviewer to determine whether such assumptions are reasonable, the E.I.S. should be considered inadequate and incomplete.

Formal adoption of a comprehensive land use plan by a local governing body establishes a very important legal precedent because of the general rule that zoning must be in conformance with the directions of the comprehensive plan. The comprehensive plan is both a policy statement and a research document, intended to commit local land use decision-makers to a logical sequence of response

- 64 -

to development pressures. The responses must be grounded in fact and a rigorous analysis of policy alternatives.

E.I.S. reviewers should be especially sensitive to situations where the authority to zone is not linked to a comprehensive land use planning document. The absence of the guiding document makes much easier an arbitrary zoning change in response to narrowly based pressures. The existence of the planning document permits the proprietor to challenge openly any change in zoning which is not in conformance with the plan. In situations where any of the jurisdictions in the airport impact area have neither zoning nor planning powers the analyst should be required to contact an appropriate State agency to determine whether land use plans and controls have been developed or applied exogenously. The increase in State interest in land use planning and development controls and the resultant declaration of airports as areas of special regional and State concern should provide both analysts and reviewers with more accurate tools for the determination of future land useage than have been available.

C. Gross Planning Indicators

ా

 \cap

С

С

Ű

Application of the guidance system explained above is simplified if the analyst provides the reviewer with certain clues to the land development process and the related pressures. Private and public investments often carry implied consequences which greatly expand the land use impacts of the original action. Too often these consequences are not understood when the impact of the action is first considered and the public and private costs of the consequences far exceed the benefits in the long term.

Public investments in infrastructure, such as highways, and water and sever treatment networks must be analyzed in this light. Highway access to an airport, a factory, a shopping center and other such centers of activity will create, automatically, pressures for development all along the access road such that land conversion is a foregone conclusion.

THE REVIEWER MUST REMEMBER THAT RESIDENTIAL DEVELOPMENT IS BY FAR THE LARGEST CONSUMER OF URBAN AREA LAND, AND THE ONLY LAND USE THAT CAN EASTLY FILL IN THE SPACES BETWEEN COMMERCIAL, INDUSTRIAL OR RECREATIONAL ACTIVITY CENTERS.

Thus when linear networks are created by investment in public facilities, they will attrack residential uses primarily, with proportionately insignificant quantities of uses more compatible with airport activities.

- 65 -

Similarly, private investment in activity centers such as factories, industrial parks, recreational facilities or commercial centers will attract both residential concentration and public investment. Major private investment, in fact, will not be made until the supporting public facilities are guaranteed. Subsequently, the very existence of the combination of private and public investment will attract residential development to take advantage of proximity to the facility. Since World War II, airports themselves have provided one of the best examples of this pehnomenon.

The analyst preparing an E.I.S. must present a clear picture of the plans for public investment in the impact area. Obtaining private investments plans is a more difficult task. It is for this reason that an adequate base of local land use planning and control is so important. There are other clues which can be detected, however, which will provide individuals reviewing an E.I.S. with a better idea of the development plans for a given area. Perhaps the best is land ownership.

1. land ownership

 \circ

 \circ

Ô

Ľ۵

0

0

Land ownership records are a matter of public record, though they require detailed examination of plat books and tax records on file with local government authorities. Analysis of land ownership records by E.I.S. analysts will turn up efforts to amass large tracts of land.

2. land prices

These records require equally diligent research by the analyst as does analysis of land ownership, though often they can be combined. Substantial increases in the price of land often provide evidence of acceptance of the area under study as suitable for a more intense use and, therefore, worth a higher investment.

3. petitions for zoning change

Mentioned earlier as an essential component of the land use monitoring system, the zoning change, also a matter of public record, will telegraph the anticipated future use, at least to the extent of implying more intense use, with the accompanying need for supporting public facilities.

In summary, environmental impact statements at a minimum, should contain evidence that land ownership, land value, and zoning procedures have been carefully analyzed with the consequences for public and private land development impact in mind.

D. Indigenous Noise Impact ("Background Noise")

2

 \mathbb{C}

О

Э

ੋ

С

Ċ

Ĵ

One aspect of land development and its relationship to airport operations an impact which has, until recently, not received proper attention is the noise generating character of certain types of land use. The highly specific identification of aircraft noise has permitted people to believe that aircraft, (or an occasional truck or motorcycle) are the cause of changes in environment from "peaceful" to "noisy." Certain types of land development bring with them long term noise impact which may well remain at levels above those generated by all but a very few overflying aircraft. Early analysis of neighborhood noise levels suggests that background levels ranging from 60 to 65 Ldn are quite common in residential neighborhoods not impacted by a major freeway, airport or specific ground source.

Among the best recognized generators of background noise is the automobile. Concentrations of automobile activity, such as shopping centers, will also result in increases in background noise levels. Heavy industry, mining operations and truck traffic may also be major contributors, particularly if they run during the evening and night hours. Amusement facilities including outdoor theaters, swimming pools, rides, and race tracks, will also have to be considered, though in some cases their noise making properties are strictly limited to certain days of the week or hours. The standard subdivision will generate substantial background noise, with levels generally varying with population density and vehicle ownership.

It seems more and more likely that measurement of the noise impact of airport operations will be placed in the context of the background noise of affected communities, and that plans and programs to reduce noise exposure will require a broadly based analysis of all noise sources. An overview of the noise sensitivity of certain land uses is shown in the Figures S and T which follow. At present these sensitivities are reflected in one Federal Government Regulation only: HUD Circular 1390.2 which regulates the use of Federal mortgage programs with respect to noise levels.

- 67 -

TABLE IV NOTES FOR FIGURE S

10

0

3

勴

13

 \odot

-)

 \mathcal{O}

Clearly Normally Normally Clearly Acceptable Acceptable Unacceptable Unacceptable

Clearly acceptable: The noise exposure is such that the activities associated with the land use may be carried out with essentially no interference from aircraft noise. (Residential areas: both indoor.and outdoor noise environments are pleasant.)

Normally acceptable: The noise exposure is great enough to be of some concern, but common building constructions will make the indoor environment acceptable, even for sleeping quarters. (Residential areas: the outdoor environment will be reasonably pleasant for recreation and play.)

Normally unacceptable: The noise exposure is significantly more severe so that unusual and costly building constructions are necessary to ensure adequate performance of activities. (Residential areas: barriers must be erected between the site and prominent noise sources to make the outdoor environment tolerable.)

Clearly unacceptable: The noise exposure at the site is so severe that construction costs to make the indoor environment acceptable for performance of activities would be prohibitive. (Residential areas: the outdoor environment would be intolerable for normal residential use.)

¹Standard Land Use Coding Manual.

²Noise Sensitivity Code (see page 53).

³x represents SLUCM category broader or narrower than, but generally inclusive of, the category described.

⁴Excluding hospitals.

Source: <u>Aircraft Noise Impact: Planning Guidelines for</u> Local Agencies. U.S. Dept. of Housing and Urban Development. Government Printing Office, Washington, D.C., Nov. 1972; pp. 54/55.

- 68 -

FIGURE S	
LAND USE	COMPATIBILITY GUIDELINES FOR
AIRCRAFT	NOISE ENVIRONMENTS

.

÷44

m

F7

÷,

1,**3**

Ċ

Ċ

LAND USE CATEGORY	SLUCM ¹ CODE	NSC ²	LAND USE INTERPRETATION FOR NEF VALUE 10 20 30 40 50
Residential - Single Family, Duplex, Mobile Homes	11x ³	1	
Residential - Multiple Family, Dormitories, etc.	11x, 12, 13, 19	1	
Transient Lodging	15	2	
School classrooms, Libraries, Cnurches	68 7111	1	
Hospitals, Nursing Homes	651	1	
Auditoriums, Concert Halls, Music Shells	721	1	
Sports Arenas, Outdoor Spectator Sports	722	1	
Playgrounds, Neighborhood Parks	761, 762	1	
Golf Courses, Riding Stables, Water Rec., Cemeteries	741×, 743×, 744	2	
Office Buildings, Personal, Business and Professional	61, 62, 63, 69, 65 ⁴	3	
Commercial - Retail, Movie Theaters, Restaurants	53, 54, 56, 57, 59	3	
Commercial - Wholesale, Some Retail, Ind., Mfg., Util.	51, 52, 64, 2, 3, 4	4	
Manufacturing, Communications (Noise Sensitive)	35,47	2	
Livestock Farming, Animal Breeding	815, 816, 817	3	
Agriculture (except Livestock), Mining, Fishing	81, 82, 83, 84,85,91,93	5	
Public Right-of-Way	45	5	
Extensive Natural Recreation Areas	91, 92, 93, 99,7491,75	3	

- 69 -

FICURE T NOISE IMPACT ON HUMAN ACTIVITIES

1 22 1

:

Low	MODELE	Serious	Critical		
Impact		Impact	Impect		

Low impact: Activity can be performed with fitth or no interruption from aircraft noise, though noise may be noticeable above background levels.

Moderata impact: Activity can be performed but with some interference from alreraft noise due to level or frequency of Interruptions.

Serious Impact: Activity can be performed but only with difficulty in the aircraft noise environment due to lovel or frequency of interruptions.

Critical impact: Activity cannot be performed acceptably in the aircraft noise environment.

Impact estimates based on activity criteria of Figure 2-16 and mathodology developed in Figures 2-18, 2-15 and 2-20, for noise environment with 64 day and 8 night operations,

HUHAN ACTIVITY	IMPACT ESTIMATE FOR NEF VALUE
	<u>10 20 30 kg 60 60</u>
Intensive conversation	
Casual Conversation	
Telephone lise	
Stamping	
Eating	
Reading	
Meditation	
Writing	
Studying	
Seminar, Group Discussion	
Classroon, Lecture	
Individual creative Activity	
Live Theater	I MARKED IN THE REAL PROPERTY AND INTERPORT
Watching Films	
Watching Television	
Listening to Husic	
Ceremony, Tradition	
Public Events, Assemblies	
Spectator Sports	
Public Mass Recreation	
Physical Recreation	
Outdoor Activities	
Urban Outdoor Activities 1	
Extended Child Care	
Driving ¹	
Shopping	
Tachnical Manual Work	
Skilled Menual Work	
nanual Work	
Equipment Operation ²	
Repetitive Work	
Noise-Sensitive Equipment 2	
فتقارب المرابة المتخال المتحد والمتحد	A REAL PROPERTY AND A REAL

The allowance for structural insulation,

²Depends on characteristics of particular equipment,

 \sim

Source: Aircraft Sofie Inpact Planning Culter inem for Local Agenty area. U.S. Incit. of HeUD, for in Fourier onlice, Math., D.C., Revender 1973; pp. 61/62. ••

FIGURE T NOISE IMPACT ON HUMAN ACTIVITIES

1 .

30

1

Low	Moderate	Serious	Critical
Impact	Impact	Impact	Impact

Low Impact: Activity can be performed with little or no interruption from aircraft noise, though noise may be noticeable above background levels.

Moderate impact: Activity can be performed but with some interference from aircraft noise due to level or frequency of interruptions.

Serious impact: Activity can be performed but only with difficulty in the aircraft noise environment due to level or frequency of interruptions.

Critical impact: Activity cannot be performed acceptably in the alreaft noise environment.

Impact estimates based on activity criteria of Figure 2-16 and methodology developed in Figures 2-18, 2-19 and 2-20, for noise environment with 64 day and 8 night operations.

HUMAN ACTIVITY	IMPACT ESTIMATE FOR NEF VALUE					
	10 20 30 40 50 60					
Intensive Conversation						
Casual Conversation						
Telephone Use						
Sleeping						
Eating						
Reading						
Heditation						
Writing						
Studying						
Seminar, Group Discussion						
ugu 🦉 🖓 👘 👘 👘 👘 👘 👘						

SECTIONED DOCUMENT

Seminar, Group Discussion	
Classroom, Lecture	
Individual Creative Activity	
Live Theater	
Watching Films	
Watching Television	
Listening to Music	
Ceremony, Tradition	
Public Events, Assemblies	
Spectator Sports	
Public Mass Recreation 1	
Physical Recreation 1	
Outdoor Activities	
Urban Outdoor Activities	
Extended Child Care	
Driving ¹	
Shopping	
Technical Manual Work	
Skilled Manual Work	
Manual Work	
Equipment Operation ²	
Repetitive Work	
Noise-Sensitive Equipment ²	

¹No allowance for structural insulation.

.

ارد. مانند المحيدين الروالي ويواندووانستيوموامياهاوموام

²Depends on characteristics of particular equipment.

SOURCE: Aircraft Noise Impact: <u>Planning Guidelines for Local</u> <u>Agencies</u>. U.S. Dept. of H.U.D. Gov't Printing Office, Wash., D.C., November 1972; pp. 61/62.

Ċ

ພ

SECTIONED DOCUMENT

ALTERNATIVES TO PROPOSED FEDERAL ACTIONS AND THE RELATIONSHIP TO NOISE ABATEMENT STRATEGIES.

 \sim

0

0

 \supset

0

0

 \supset

Э

С

Environmental Impact Statements relating to airports and airport operations are most likely to result from efforts to develop new facilities or expand existing ones. These E.I.S. generating actions are listed in Figures G and H combined. Federal assistance for these actions is controlled by the Airport and Airway Development Program (ADAP). The interrelationship of these actions will, in most cases, be close. Expansion of operating capacity by runway adjustments to permit larger aircraft, for example, will require subsequent, if not concurrent adjustments to terminal facilities, parking capacity, access to the metropolitan area and other improvements to supporting infrastructure. In almost all cases the development program will use a combination of local and Federal financing, with the local component being drawn from airport revenues or, in the case of large projects, bond sales. Thus the reviewer must consider the feasibility of the financial program to be applied, particularly as it relates to the staging of work.

The most ciritical alternative to be considered for a major Federal action which increases <u>capacity</u> is that of assigning projected "excess" operations to another existing facility serving the same economic trade area. In some instances, joint use of military airfields may be an especially important consideration becasue additional air carrier operations will rarely contribute a substantial increase to noise levels generated by fighters, bombers and heavy transport military aircraft if the base is moderately active.

Conversely, the most critical alternative to be considered where a <u>new</u> airport is proposed, is the expansion of an existing airport or airports serving the same economic trade area. Additional instrumentation and a reduction in the number of general aviation operations (particularly by those aircraft which cannot approach and depart at speeds identical to air carrier jets) may double or triple the capacity of a congested airport. Where separation standards may be met, the addition of a main ILS runway can also substantially increase capacity.

Clearly, such development program alternatives must be tied to a noise prevention or abatement plan to be considered an adequate analysis of environmental impact. Table V provides a comprehensive review of noise abatement strategies and their salient characteristics. The airport related actions mentioned in the paragraph above, however, will be made much more environmentally sound if they are programmed with such strategies in mind, and in concert with the appropriate governmental agencies.

- 71 -

Figure U provides a matrix of interrelationships between noise abatement strategies and the variety of governmental agencies holding significant authority. Figure V expands on the interrelationships between abatement strategies, showing whether one approach has a positive or negative impact on another. These matrices, while complex, are very helpful in setting airport development alternatives into perspective with the complementary actions which are essential if the effects of airport noise impact are to be properly recognized and minimized. A final graphic presentation, Figure W suggests some of the timing constraints of certain noise abatement strategies, a vital consideration in reviewing alternative development plans and assessing environmental impact.

 \odot

Φ

C

С

0

С

Э

0

Ċ

- 72 -

TABLE V NOISE ABATEMENT STRATEGIES: COSTS, EFFECTIVENESS, OTHER CONSIDERATIONS

M

19

 \odot

ð

2 **+ 9**

ø

Q

0

 \mathbb{C}

Û

1

Strategy	Noise reduction	Casts	Limitations, Comments, other consideration
Higher holding and maneuver altitudes, raise glide slope intercept altitude	About 9 EPNdB with Increase from 1500' to 3000', Primary benefit 2-4 miles from chreshold,	ATC work load	in use at some airports, FAA polley "keep 'em high", Doesn't halp in highest noise areas, No equipment change,
Steeper glide slope	0-10 EPNdB, greater with greater dis- tance from threshold. (higher altitude, reduced power)	Pilot workload Safety	Some gains available from enforcing existing minimum gilde slope. Reduce fear of low-flying aircraft.
Two-segment approach. 60 to 30 at 3 miles, 1000' altitude.	0-10 EPNdB, greater with greater dis- tance from threshold, (higher altitude, reducad power)	Safety Pilot workload	Could have later switch to flatter slope with automated systems.
Two-segment approach. 6 ⁰ to 3 ⁰ at less than 1 mile, 250' to 400' altitude. (automatic controls)	5-15 EPNd8, greater with greater dis- tance from threshold. (higher altitude, reduced power)	Equipment modifications	More benefit in highest noise impact areas than most other changes,
Delayed flap and gear extension	0-6 EPNdB until axtension (reduced power)	Safaty Pilot workload	Considerable benefit from changes with existing equipment - pilot option now. More patential with autometed systems. Potential benefit in high-noise areas.
Combined approach techniques, exist- ing equipment (high intercept, reduced flaps, 2-segment approach)	Possibly 20 EPNd8 at 6-10 miles, less as threshold ap- proached. (higher altitude, reduced power)	Pilot and ATC workload Safety	
Thrust cutbacks after takeoff, røducad flaps,	Up to 5 EPKdB ¹ after cutback, less with greater distance, Varies with aircraft type.	Safety	Now in use at some airports and by some airlines. Less useful with 4-engine jets because of less reserve power. Hore poten- tial with higher reserve power. Some addi- tionel potential with automated systems, May result in more area in NEF contours because of slower climb after cutback.
Proferential runways	Raises in some, lowers in others	Small to moderate reduction in cam pacity, Pilot & ATC workload, Longer flights	Opportunity limited by land use pattern, usefulness limited by wind conditions at airports with strong prevailing winds.
Runway threshold shifts	Silght	May involve runway extension	Much shift required for significant reduc- tion. More important as other techniques implemented. May increase airport noise with increased use of thrust reversal.
Concentration in corridors, delays before turning.	Varies, increase in some areas	Reduced Capacity Pilot and ATC workload Longer flights	Monitoring haipful. Once established, should remain stable to be useful in adjus ing land uses to noise impact,

Data for operational changes from N. C. Gregoire and J. M. Streckenbach, <u>Effects of Aircraft Operation on</u> <u>Community Noise</u>, Seattle, The Boeing Company, June 1971. Will wary considerably depending on existing practice, type of aircraft used, and ground location relative to flight path.

- 73 -

TABLE V (CONT)

ł

- 74 -

	Noise Abatement Stretter	Noise reduction	COILS	Limitations, Commants, other considerations
ŕð,	· Housing code	inside; up to 25 EPKdB over normal construction	Administrative Code writing Increased develop- ment costs	Housing code commonly applies to existing dwallings. Public concern legally question- able for requirements in single-family dwallings. Hany jurisdictions involved. Local opposition to increased costs. Model codes helpfut.
~ ~	Sound Insulation of structures	10-25 EPNdB over normal construction. Varies with type of existing construc- tion and extent of modification.	Varies with reduction: 10-15 dB, about 33/sq. ft.; 25 dB, about \$8/ sq. ft. (residences)	Doesn't change outdoor anvironment, Air conditioning required - changes "feel" of being inside house - ability to hear children and other neighborhood noises. Also insu- lates egainst traffic and other embient noise. Legal limits on imposition of requirements through zoning and building codes - state enabling legislation, model codes helpful. Resistance from local community - increases development costs. Can the provision of public funds to grenting easement.
.	Sound masking	None - increases noise javei	Acquisition, installation (varies)	Untestad in residential use. May be suitable for some commercial facilities.
Ð	Planning by government, airport authority	Reduce sensitive area exposed	Administration Data collection	Must be based on accurate information for long time horizon to be effective in land use planning. Needs implementation tools. Many local jurisdictions often involved.
÷	Public Kearings	var les	Varies	Low level of public information makes process one-sided. Could be required for larger num- ber of noise impact factors, including opera- tional changes as well as location and design. Little incentive to adopt public-recommended changes.
-	Public Involvement	Varles	Higher than hearings	Meaningful citizen involvement in decision- making expensive and time-consuming. Needed earlier in design process. Hay only reach certain socio-economic groups, Need some means to require joint solution to make effective (airport may ignore).
ð	Noise casemants on developed proparty	None	Varies with ex- tent of easement - same order of magnitude as insulation - 10-20% of value.	Does nothing to control noise. Effect may depend on method of financing. May provide enough money to insulate structure. May be purchased or leased. Protects airport operator against litigation, though in- creased noise may bring new litigation.
5	Tax raductions	Kone	Administrative decision dater- mines amount of tax loss	Similar to easement, but doesn't give lagal protection. If applied to new development, may encourage incompatible development.
	Existing legal chennels	Varies	Litigation cost	Difficulty of demonstrating extent of damage. Must be continuing threat in order to affact aircraft noise lavels. Same people often on both sides of case when city vs. airport authority. Time for settlement long.
>	Regulation by FAA	Varies	Costs to airport opérator, air⇒ lines	FAA has little incentive to consider local community impact. Regulations to be most effective should be based on performance standards, but such standards make enforce- ment difficult. Difficult to develop regula- tions that don't create unusual market forces
				rather than desired noise reduction. Not automatic compilance, depends on enforcement.

¹MANAPS, JFK International Airport, p. 17.

and a grant of the second s

J

1

 \mathcal{I}

- 75 -

,

TABLE V (CONT)

Noise Abatement	Naise reduction	COsts.	Limitations, Comments, other considerations
Relocation of Incompatible uses - Acquisition	Reduce sensitive area exposed	Very high - pur- chase of developed land, demolition, assembly and pre- paration, reloca- tion. (federal aids for many parts of program)	Airport authority often not authorized and would not want to undertake. Generally very large areas involved. Local opposition prob- ably strong. Existing development may not have sufficient other 'blight" to justify. Noise as blighting influence in itself suffi- clent to justify redevelopment only in most extreme cases. Some relocation may be done in private sector if market is alded - alternatives provided, relocation loans, etc.
Relocation - market service	Reduce sensitive areas exposed	Varies with nature and extent of pro- gram, Relocation information and/or financial assistance, Development of alternate locations,	Doesn't reduce noise level. Theoretically means of adjusting market efficiently.
Zoning to com- patible use	Reduce sensitive area exposed	Administrative. Slows development if demand for for- bidden use {tax loss}. Opportunity cost of land in other uses. Retroactive - compensation. if a "taking" - acquisition. Federel alds (HUD 701),	Usually many jurisdictions have authority in impact area, Local government doesn't have resources to set and enforce complex stan- dards. Easier with model codes. May require enabling legislation to use noise as criterion. (Can't restrict aircraft operations (Federal preemption). Tax competition discourages restrictions, Not retroactive - limited to undeveloped areas. Local government will resist metropolitan zoning. Hinnesota Air- port zoning act provides for combined author- ity for standard setting. Zoning-oriented land use classifications and noise sensiti- vity not always correlated - new standards may be required.
Subdivision . regulation	Reduce sensitive area exposed	Administrative	Require large parcels for commercial/ industrial development in impact area. Little effect in itself in reducing con- flicts - dependent on zoning regulations.
Public Services Planning - Official Hap (Withhold services in impact area)	Reduce sensitive area exposed	Administrative. Tax income loss from undeveloped land, if a "taking" - acquisition,	May be legal restrictions on ability to withhold services. State enabling legis- lation required. May be followed as infor- mal policy, but with much reduced effective- ness.
Advance acquisition of land in impact area for resale with controls	Reduce sensitive area exposed		Due to high cost, limited to undeveloped areas. Legal authority limited - state enabling legislation required. Airport authority not likely to undertake unless required to. Political opposition from local government, Tax compatition, Limited by financial resources, income highly de- pendent on timing. Acquisition may be diff- cult because of speculative increases in value after site selection. New airports only. Hethod to circumvent limitations on use of noise criteria in zoning and building codes through deed restrictions.
Building codes requiring insulation	Inside: up to 25 EPNdB over normal construction	Increased costs of development (tax loss) 10-20% in- crease in construc- tion cost.	May require state enabling legislation to use noise zones for building code restric- tions. Difficult to apply retroactively, Model codes helpful, Local opposition to increased development costs. Not likely to be legally applicable to single-family residences. Many local jurisdictions involved. Heat insulation often does not provide adequate sound insulation. Cost to owner or buyer.

\diamond

Ċ

0

Ċ

1

.

0

 \bigcirc

- 76 -

TABLE V (CONT)

Noise Abatement Strategy	Noise reduction	Costs	Limitations, Comments, other considerations
Relocation of take- off and approach routes	Raises in some, lowers in others	Longer flights Reduction in capacity Pilot and ATC workload	Opportunity limited by development pattern, To preserve opportunity need development controls in undeveloped corridors. Monitor- ing helpful.
Schodule restric- tions (aliminate night flights)	High at night, none in daytime.	High to airlines if no alternate airport. Reduced capacity. Schedule conflicts.	Doesn't help at schools, other day uses. Considerable benefit in residential areas. Greatest opportunity in metropoliton areas with mora than one airport, outlying air- port for night flights.
Shifting corridors by time of day	Varies, increase in some areas and at some times	Reduced capacity Pilot and ATC workload Longer flights	Nonitoring helpful. Hay be particularly useful in unusual land use situations where day-night shift appropriate. Possibility of providing some respite for all but clos- est in areas at cost of wider area of impact.
Aircraft type res- trictions, Elimi- nate 4-engine jets, license by noise levels,	Varies with existing usage, particular restri⊂tion.	High to airlines if no aiternate airport,	In use at JFK; Newark and La Guardia no 4-engine jets. Ereatest opportunity in metropolitan areas with more than one air- port, outlying airport for noisier aircraft.
Regulate time and place of ground operations	Varies		Host benefit from restricting night engine runups near residential areas.
Nacalle Lining	Takeoff - 3 EPNdB Approach - 10-15 EPNdB from present engines ¹	initial - up to și,000,000/air- craft, + 9%, openating	Available soon. Requires Federal action.
"Quiet engine"	About 10 EPNdB below "bast" today (747, DC-10) takeoff and landing	\$4 million/aircraft retrofit, less on new aircraft (varies with type)	Available in 1975 or later. Requires federal action, Various types under consideration.
Airframe changes Largor aircraft V/STOL aircraft	Reduce number of flights, increase takeoff and approach slopes	Research and development	Private sector action. Limited by passenger traffic demand.
Traffic allocation among airports and aircraft,	Reduce sensitive areas exposed, reduce number of flights	Longer filghts Schedule problems Ground transporta- tion	Among airports - limited to areas with more than one major airport. Among aircraft - reducing surplus seating requires some inter-airline cooperation. Federal planning assistance.
New alrports	Raises some, lowers others. Reduce sensitive area exposed.	Administration Planning Acquisition Access Externalities at different locations	Some regional cooperation likely to be required. Easier with metropolitan authority with taxing powers. Coordination of airport location and design with land use planning and controls necessary to insure long-run benefits. Federal planning assistance.
Abandonment of existing airports	Raduce sensitive areas exposed	Abendon existing facilities, jobs lost if no new air- port. Depends on distance to nearest available air facilit	Can possibly use for general aviation or V/STOL. Possible income from sale of property. Y.
Airport master planning - runway orightation	Reduce sensitive areas exposed	Varlas; Administration Acquisition Operating costs	Wind, safaty factors now predominate design requirements. Limited incentive to consider noise, Helpful to coordinate with surround- ing land use if under same authority. Pri- marily new airports, also expansion. Expan- sion of use of environmental impact statement and review requirements may cause noise to be considered. Federal planning assistance.

Hational Academy of Sciences, National Academy of Engineering, <u>Jamaica Bay and Kennedy Airport (Volume II</u>), 1971, p. 115

A

Ģ

i n

 \odot

0

 ϕ

Э

 \circ

Ċ

U.

٩. ...

TABLE V (CONT)

Nolso Abatement

<u>Strategy</u>	Noise reduction	Costs	Limitations, Comments, other considerations	
Alrport mester planning + mointenance areas	Varies by location	Varies	Locata maintenance areas away from sensi- tive uses. Federal planning assistance.	
Airport mester planning → site size to include impact area	Raduce sensitive Area exposed	May be very high initial cost, carrying costs, Taxes foregone, Acquisition (possible income from leasing or sale with res- trictions)	Airport authority may not be legally em- powered to acquire land for other than air- port use. (State enabling legislation required.) Local political opposition - removal from tax rolls, development poten- tial. Coming into use at newest planned airports: Paindale (Los Angeles) 18,000- acre site; irving (pallas-FE, Worth); Minneapolis-St. Paul. Limited by financial resources of airport authority. Can make agreements on controls with surrounding communities rather then purchaso. Federal planning assistance.	,
Airport master planning - management of airport property	Reduce sensitive Area exposed	Administration Possible reduced utilization	Conditional lesses or sale of excess property. Effectiveness limited by site size. Federal planning assistance.	
Air traffic demand - V/STOL	Reduce highest noise impact areas, possi- bly increase lower impact, (Reduce num- ber of CTOL flights)	New metropolitan V/STOL ports, New equipment. Access,	V/STOL demend most sensitive to changes in other transport - highways, HSGT, etc., Introduce now unexposed areas to noise. High takeoff, approach noise. May be serious access and parking problems in downtown areas.	Ċ
Other transport modes (Primarlly High speed ground transportation)	Reduce number of flights	System, equipment, access, land ac∼ quisition, research and davelopment, planning,	inter-regional and inter-state cooperation required. Volume sufficient for major separate system in only very few locations (NE corridor, LA - Sf).	¢
Other technologies (communication)	Reduce number of flights	System Research and development	Unpredictable, 10-20 year + horizon, Social changes likely with communication system sufficiently developed to reduce flight demand. National scale of planning and implementation required.	
arriers	Up to 10 EPNd0 adjacent to airport, Useful for runups	Varies with extent	High, massive barriers best. Trees limited in reduction capacity. Not effective for alrborne alrcraft. Barrier must be close to either source or receiver to be effective. May be useful for V/STOL.	Ċ
ublic acquisition nd development of acent land	Roduce sensitive areas exposed from what would occur without public action	Acquisition Site Preparation Merketing Carrying costs Administration Tax loss during holding period	Airport authority not likely to want to get involved, Local government may object to controls, Business objections to government in the development business, Limited by demand for compatible use in impact area, Significant percent of impact area only at a very few airports.	, L
vecant land	Reduce sensitive areas exposed from what would occur without public action	Publicity Administration Tax incentives tax loss for initial period	Can't prevent incompatible development. Tax incentives a minor factor in most business location decisions. Limited by demand for compatible use in impact area. Significant percent of impact area only at a very few airports.	Ċ
	Reduce sensitive areas exposed from what would occur without public action	Acquisition Development Differential in Capital and operating costs between sirport site and alter- nate sites Tax loss	Public uses likely to be limited, Federal aids available for many public uses, Hany open space and recreation uses also sensi- tive to noise or other airport impact.	Ċ

- 77 -

TABLE V (CONT)

Noise Abstement		•	
Strategy	Noise reduction	Costs	Limitations, Comments, other considerations
Legislative establishment of rasponsibility and payment machanism	Varies	Cost to airport operator, air- lines. Administration.	Powerful airline, eirport and airframe manufacturar lobbles will oppose. Limited by Federal preemption of airline regulation, prohibition ageinst state interference with interstate commerce. Legal questions about use of noise contours as basis of strategy.
information systems, monitoring	Control over other noise abètement stràtègies	Setup of monitor- ing network. Administration	Must have legal powers to control aircraft in order to be useful, Provide Information for setting local standards,
Alternative deci- sion structures, Metropolitan co- ordinating mechanians: a. cooperation b. joint authority c. supervening authority	Easior implementa- tion of land use related strategies	Administrative	Simple information may be sufficient to achieve considerable control. Local objec- tions strong to giving up any significant <u>decision</u> power to metropolitan authority. Needs to be combined with other measures, such as tax sharing, to encourage local perticipation.
Economic Incentives for noise reduction: Fines Variable landing fees Passanger taxes Adjusting airline license fees	Varies	Costs to airlines. Monitoring system, Administration.	Must be carefully structured to have desired affect. Limited by Federal preemption of aircraft operations regulation, prohibition against state interference with interstate commerce. Possible conflicting incentives at different airports.
information to local communities, devel+ opers, homeowners	May reduce sensitive area exposed from what would occur with no information	Cost of information Enforcement	Leaves decision on whether to use noise as criterion to individual or community, Any social costs of noise impact not included in decisions.

SOURCE:

*P*h

13

ø

n de la compañía de l

1000

79

¢

 \circ

j.

Aircraft Noise Impact: Planning Guidelines for Local Agencies. U.S. Dept. of Housing and Urban Development. Government Printing Office, Wash., D.C., November 1972; pp. 82-87.

- 78 -

POPULATION GROUP NOISE ABATEMENT STRATE GY	lmpact area residents	Local community	Local planners	Local gov't	Metro govt, COG	Airport Authority	
Operational Changes	Ľ	LS	L/S	L/S	Ľ/s	H	H Z
Schedule Restrictions	Ľ∕s	L/S	L/s	LS	L/S	H	F Z
Aircraft Type Restrictions	Ľs	L/S	LS	LS	L/S	H	アノ
Technological Change	LN	LN	LN	ĽN	LN	L/s	吵
Airport System Change	Ŀ	MP	MP	MP	\mathbb{F}	HP	M
Traffic Demand Change	<u>۲</u>	L	L/T	5	7	5	M
Encouraging Compatible Use	Ľ	L/P	HT	H	H/	MF	
Public Use	Ľ	LF	HT	HF	HP	5	易
Relocation of Incompatible Use	Ŀx	Ļρ	HT	Н	Ήρ	M	M
Prohibiting Incompat. Use	Ľ/x	Lρ	HT	H	ΉР	LN	Z
Sensitivity Changes	HX	Ľx	HT	HE	Η _P	MF	M
Airport Environs Planning	Ŀ	L P	H	H	H	M	ビー
Compensation	MP	L	HT	H	₽	M	R Z
Legal Action	H	5	HT	H	\mathbb{H}	Hp	展
Regulation, Admin. Mech.	L/s	Ŀ	Ľ	Ľ	L	버	Ĩ,
Metropolitan Control	Ŀ		MX	MX	H	HP	1 4
Economic Incentives	L/s	L/s	<u>ل</u>	L/s	L	써	ที่
Information	H	HP	Н _Р	H P	H/	H	区。
			1.14.1	°a '			

SECTIONED DOCUMENT

٦.

10

 \mathbb{O}

 \bigcirc

Э

ار این او در این و بین سیسه معربه در در در این ا در باری این اور مطاور در معمولین از قوم از اور فران

State Aeronautics Comm. Legislature depts Fed. Congress Airlines į State 0ther CAB **GUH** FAA R Ν

1. 18

FIGURE U upper left: degree of Involvement lower right: type of D.C., November 1972; p. 151. Involvement Degree of involvement H - High or crucial Involvement M - Some involvement L - Little or no involvement Type of involvement R: Initiates regulation or legislation I: Initiates action F: Provides funding T: Technical Advice or service P: Participate in action

X: May resist strategy

SECTIONED DOCUMENT

S: Suggest or request change N: No significant Involvement

INFLUENCE OF VARIOUS GROUPS ON IMPLEMENTATION OF NOISE ABATEMENT STRATEGIES

> SOURCE: Aircraft Noise Impact: Planning Guidelines for Local Agencies. U.S. Dept. of H.U.D. Gov't Printing Office, Wash.,

Acres

- 79 -

NOISE ABATEMENT STRATECIES NOISE ABATEMENT STRATEGIES	Operational Change	Schedule Restriction	Aircraft Type Restr.	Technological Change	Airport System Change	Airport Design Change	Traffic Demand Change	
Operational Change	-/ ₁₁	†/M	+ M	+/M	- H	Тн	- H	
Schedule Restriction	†/M	- H	+/	+ M	-/-	-/	1	[.
Aircraft Type Restr.	+/L	+/	+/L	+/L	+/	+/	M	
Technological Change	†/L	$\frac{1}{2}$	M	-/m	1/2	1	M	
Airport System Change	M	M	M	Ť.	Гн	\mathbb{Z}	- H	
Airport Design Change	/ H	1	1/	+ M	- H	И	M	
Traffic Demand Change	M	M	M	M	M	M	\square	
Encourage Compat. Use	74	+M	+ M	+́н	-Ή	γH	\mathbf{A}	
Public Use	∕H	7m	+/H	+/H	Ч	H	Ĩ	
Relocate Incompat. Use	∕H	+/M	- M	† ∕н	- H	H	H	
Prohibit Incompat. Use	·Η	+ M	+/H	+ /H	-/н	H	H	
Sensitivity Changes (Insul.)		+ M	+ M	+ H	Н	H	H	
Airport Environs Planning	- H	-́н	74	-/H	-/H	H	-/H	
Compensation	H	+	+/M	†/M	- H	- Ή	/ H	1. 1. 1.
Legal Action	H	ΤH	H	- H	- H	Ĩ.H	/ H	
Regulation, Admin.	1	+ +	/L	1	1	<u></u> *	Ź	
Metropolitan Control	*/	*/L	+	Ź	Ź	7.	*	
Econ. Incentives	*/	*	*/L	<u>+</u> /-	1	\overline{X}	$\frac{1}{2}$	r iv
Information	M	- M	- M	/m	ZM.	M	- M	计时间

 \cap

<u>ි</u>.

Ö

10

€.)

(ت

Ó

О

Const.

SECTIONED DOCUMENT

Strategy at left is assumed in use. Matrix indicates in on strategy at left.

	ш	Public Use	Relocate Incompat.Use	Prohibit Incompat.Use	Sensitivity Changes	Airport Environs Plg.	Compensation	Legal Action	Regulation, Admin.	Metropolitan Control	Econ. Incentives	Information	ちょれん ディード 文字 さんさん
	+/M	+ M	+/M	+/ M	+/ M	-/	+/	-M	- H	M	-/	M	
	†/m	† M	+/M	+/M	+/M	+ M	+/-	+/L	- H		H		
	<u>+</u>	†⁄Ĺ	+/L	+/	+/L	+ /ι	+_L	+ L	M	7	-/H	M	
	⁺∕`	+/L	1	+/	+/L	+/L	+/	+_L	M	7	- H	- M	
1	†∕ ₩	+M	₩,	₩,	Ť,M	- M	丬	M	M	Тн	M	M	
	+/M	1/m	₩,	+/M	+/M	-Μ	1	-/m	-M	- H	-M	-/m	
9 11	°⁺∕m	† _M	+/M	+/M	+/M	+ M	$\frac{1}{2}$	-M	-M	:-/m	- M	-/m	
÷[7	TH H	+ M	+/M	大	+	M	*	+ M	M	人	+/M	
ľ	+/M		T/M	+/M	大	+ H	M	$\frac{1}{2}$	+ M	M	人	Ť,	2 24
	7	Ŧ	\square	+ H	大	+/M	7	+/L	+ M	+ M	1/	ŤM	
	. . /H	Ť.	+ H	\square	+ M	+/M	λ	+/	+ M	+ M	\mathbf{X}	+ M	
	÷/M	+M	+ H	Т+ Н	\square	+ M	+ M	+	+ M	+ M	\mathbf{X}	+ M	
	·/H	7	7	H	Тн		7	+/L	+/L	+/+	1	+ H	5
	7	+/M	Ť.	T+M	Ť.	+ M	\square	+/	+/L	+/	/L	+/M	
	\overline{X}	大	大	1	Ź	+/	*	\square	+/L	*	*/	+/	
	*/	*/	7	大	え	大	1	+/L	\square	+ H	- /H	+ M	20 4 5
	$\overline{\chi}$	1	1	Ť.	\mathbf{X}	7	7	+ L	+/	Ζ	*	+/H	
	× H	~ H	Гн	T H	Гн	/ H	/ H	-H	H	Ź	\mathbb{Z}	$\frac{1}{2}$	2 4 4
	%	M	M	- M		7₩		- ~	+/L	*	*	×	4 4 7 1
	1.11	- C.	95. F.		1. 2 ¹ e				2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1.200	el 🦾		2

r

FIGURE V RELATION BETWEEN STRATEGIES

6

+ positive: aids implementation, allows more freedom or no Influence

- negative: restricts implementation, limits effectiveness (may depend on specific instance indicates strong relationship)

H: close relationship

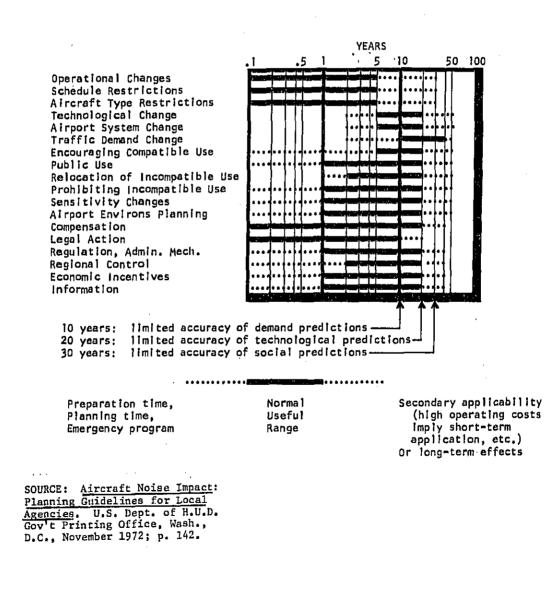
M: some relationship

.....

L: little relationship

SOURCE: Aircraft Noise Impact: Planning Guidelines for Local Agencies. U.S. Dept. of H.U.D. Gov't Printing Office, Wash., D.C., November 1972; p. 143.

nfluence of application of strategy at top


ومعادمة ومنالحة أوقامهم ويربي

يراب المحمدة والمقابلة تجلد الاستفراد بالأر الأمهور وسياته وساوحو

FIGURE W TIME HORIZONS OF NOISE ABATEMENT STRATEGIES

- 81 -

ø

6

0

lЭ